Sunggil Kim
Chonnam National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunggil Kim.
Scientific Reports | 2015
Kyung-Hee Kim; Sang Choon Lee; Junki Lee; Yeisoo Yu; Kiwoung Yang; Beom Soon Choi; Hee Jong Koh; Nomar Espinosa Waminal; Hong Il Choi; Nam Hoon Kim; Woojong Jang; Hyun Seung Park; Jonghoon Lee; Hyun Oh Lee; Ho Jun Joh; Hyeon Ju Lee; Jee Young Park; Sampath Perumal; Murukarthick Jayakodi; Yun Sun Lee; Backki Kim; Dario Copetti; Soonok Kim; Sunggil Kim; Ki Byung Lim; Young-Dong Kim; Jungho Lee; Kwang Su Cho; Beom Seok Park; Rod A. Wing
Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis.
Theoretical and Applied Genetics | 2007
Sunggil Kim; Heerae Lim; Suhyung Park; Kang-Hee Cho; Soon-Kee Sung; Dae-Geun Oh; Ki-Taek Kim
Plant mitochondrial genomes have complex configurations resulting from the multipartite structures and highly rearranged substoichiometric molecules created by repetitive sequences. To expedite the reliable classification of the diverse radish (Raphanus sativus L.) cytoplasmic types, we have developed consistent molecular markers within their complex mitochondrial genomes. orf138, a gene responsible for Ogura male-sterility, was detected in normal cultivars in the form of low-copy-number substoichiometric molecules. In addition to the dominant orf138-atp8 Ogura mitochondrial DNA (mtDNA) organization, three novel substoichiometric organizations linked to the atp8 gene were identified in this study. PCR amplification profiles of seven atp8- and atp6-linked sequences were divided into three groups. Interestingly, the normal cytoplasm type, which had previously been considered a single group, showed two patterns by PCR amplification. The most prominent difference between the two normal mtDNAs was size variation within four short-repeat sequences linked to the atp6 gene. This variation appeared to be the result of a double crossover, mediated by these homologous, short-repeat sequences. Specific PCR amplification profiles reflecting the stoichiometry of different mtDNA fragments were conserved within cultivars and across generations. Therefore, the specific sequences detected in these profiles were used as molecular markers for the classification of diverse radish germplasm. Using this classification system, a total of 90 radish cultivars, or accessions, were successfully assigned to three different mitotypes.
Theoretical and Applied Genetics | 2009
Sunggil Kim; Eul-Tai Lee; Dong Youn Cho; Tae-Ho Han; Haejeen Bang; Bhimanagouda S. Patil; Yul Kyun Ahn; Moo-Kyoung Yoon
A novel chimeric gene with a 5′ end containing the nearly complete sequence of the coxI gene and a 3′ end showing homology with chive orfA501 was isolated by genome walking from two cytoplasm types: CMS-S and CMS-T, both of which induce male-sterility in onion (Allium cepa L.). In addition, the normal active and variant inactive coxI genes were also isolated from onions containing the normal and CMS-S cytoplasms, respectively. The chimeric gene, designated as orf725, was nearly undetectable in normal cytoplasm, and the copy number of the normal coxI gene was significantly reduced in CMS-S cytoplasm. RT-PCR results showed that orf725 was not transcribed in normal cytoplasm. Meanwhile, the normal coxI gene, which is essential for normal mitochondrial function, was not expressed in CMS-S cytoplasm. However, both orf725 and coxI were transcribed in CMS-T cytoplasm. The expression of orf725, a putative male-sterility-inducing gene, was not affected by the presence of nuclear restorer-of-fertility gene(s) in male-fertility segregating populations originating from the cross between a male-sterile plant containing either CMS-T or CMS-S and a male-fertile plant whose genotypes of nuclear restorer gene(s) might be heterozygous. The specific stoichiometry of orf725 and coxI in the mtDNA of the three cytoplasm types was consistent among diverse germplasm. Therefore, a molecular marker based on the relative copy numbers of orf725 and coxI was designed for distinguishing among the three cytoplasm types by one simple PCR. The reliability and applicability of the molecular marker was shown by testing diverse onion germplasm.
Theoretical and Applied Genetics | 2015
Sunggil Kim; Cheol-Woo Kim; Minkyu Park; Doil Choi
Key messageA combination of BSA and RNA-seq was performed to identify candidates for the restorer-of-fertility gene in onion. The AcPMS1 involved in DNA mismatch repair was identified as the best candidate.AbstractTo identify candidate genes of the restorer-of-fertility gene (Ms) responsible for fertility restoration of onion cytoplasmic male-sterility, a combined approach of bulked segregant analysis and RNA-seq was employed. From 32,674 de novo assembled contigs, 430 perfectly homozygous SNPs between male-fertile (MF) and male-sterile (MS) bulks were identified in 141 contigs. After verifying the homozygosity of the SNPs by PCR amplification and sequencing, the SNPs on 139 of the contigs were genotypes for the two recombinants which contained crossover events between the Ms locus and two tightly linked molecular markers. As a result, 30 contigs showing perfect linkage with the Ms locus in the large-sized segregating population were identified. Among them, 14 showed perfect linkage disequilibrium (LD) with the Ms locus, as determined by genotyping 251 domestic breeding lines. Furthermore, molecular markers tagging the 14 contigs also showed almost perfect LD with each other in 124 exotic accessions introduced from 21 countries, except for one accession which contained a crossover event by which the 14 markers were divided into two groups. After sequencing of the full-length cDNA of the 14 contigs showing perfect LD, the deduced amino acids sequences of the MF and MS alleles were compared. Four genes were shown to harbor putative critical amino acid changes in the known domains. Among them, the gene encoding PMS1, involved in the DNA mismatch repair pathway, was assumed to be the best candidate gene responsible for fertility restoration of male-sterility in onion.
Biologia Plantarum | 2010
O. T. Kim; K. H. Bang; S. J. Jung; Y. C. Kim; D. Y. Hyun; Sunggil Kim; S. W. Cha
We isolated a gene encoding for farnesyl diphosphate synthase (FPS) from Panax ginseng, a species that produces a large quantity of triterpene saponins such as ginsenosides. The deduced amino acid sequence of PgFPS was 77, 84 and 95 % identical to those of Arabidopsis, Hevea, and Centella. Southern blot analysis indicated that P. ginseng contained more than two genes encoding for FPS. When the cDNA of PgFPS was expressed in Escherichia coli, the recombinant enzyme, purified with a His-tag column, was found to possess FPS activity. When cultures of ginseng hairy root were treated with 0.1 mM methyl jasmonate (MJ), PgFPS mRNA was detected within 12 h of the treatment, and achieved maximum after 24 h. Also FPS activity in the hairy root cultures after 12 h of MJ treatment was higher than that of the control.
Theoretical and Applied Genetics | 2008
Young-Pyo Lee; Suhyung Park; Chaewan Lim; Hyojung Kim; Heerae Lim; YoungSoon Ahn; Soon-Kee Sung; Moo-Kyoung Yoon; Sunggil Kim
A male-sterile (MS) radish (Raphanus sativus L.) was found in an accession collected from Uzbekistan. Unlike Ogura MS radishes in which no pollen grain is typically visible during anthesis, a small number of pollen grains stuck together in the dehiscing anthers was observed in the newly identified MS radish. Fluorescein diacetate tests and scanning electron micrographs showed that pollen grains in the new MS radish were severely deformed and non-viable. Cytological examination of pollen development stages showed a clear difference in the defective stage from that seen in Ogura male-sterility. Reciprocal cross-pollination with diverse male-fertile lines indicated that pollen grains of the new MS radish were completely sterile, and the female organs were fully fertile. When the new MS radish and Ogura MS lines were cross-pollinated with a set of eight breeding lines, all F1 progeny originating from crosses with the new MS radish were male-sterile. In contrast, most of the F1 progeny resulting from crosses with Ogura MS lines were male-fertile. These results demonstrated that factors associated with induction of the newly identified male-sterility are different from those of Ogura male-sterility. The lack of restorer lines for the newly identified male-sterility led us to predict that it might be a complete cytoplasmic male-sterility without restorer-of-fertility genes in nuclear genomes. However, cross-pollination with more diverse radish germplasm identified one accession introduced from Russia that could completely restore fertility, proving the existence of restorer-of-fertility gene(s) for the new male-sterility. Meanwhile, the PCR amplification profile of molecular markers for the classification of radish mitochondrial genome types revealed that the new MS radish contained a novel mitotype.
DNA Research | 2015
Seungill Kim; Myungshin Kim; Yong-Min Kim; Seon-In Yeom; Kyeongchae Cheong; Ki-Tae Kim; Jongbum Jeon; Sunggil Kim; Do-Sun Kim; Seong-Han Sohn; Yong-Hwan Lee; Doil Choi
The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp.
Current Genetics | 2010
Sunggil Kim; Moo-Kyoung Yoon
To study genetic relatedness of two male sterility-inducing cytotypes, the phylogenetic relationship among three cytotypes of onions (Allium cepa L.) was assessed by analyzing polymorphisms of the mitochondrial DNA organization and chloroplast sequences. The atp6 gene and a small open reading frame, orf22, did not differ between the normal and CMS-T cytotypes, but two SNPs and one 4-bp insertion were identified in CMS-S cytotype. Partial sequences of the chloroplast ycf2 gene were integrated in the upstream sequence of the cob gene via short repeat sequence-mediated recombination. However, this chloroplast DNA-integrated organization was detected only in CMS-S. Interestingly, disruption of a group II intron of cox2 was identified for the first time in this study. Like other trans-splicing group II introns in mitochondrial genomes, fragmentation of the intron occurred in domain IV. Two variants of each exon1 and exon2 flanking sequences were identified. The predominant types of four variants were identical in both the normal and the CMS-T cytotypes. These predominant types existed as sublimons in CMS-S cytotypes. Altogether, no differences were identified between normal and CMS-T, but significant differences in gene organization and nucleotide sequences were identified in CMS-S, suggesting recent origin of CMS-T male-sterility from the normal cytotype.
Theoretical and Applied Genetics | 2010
Duckhyun Kim; Kyung Jun Lee; Jongryoul Kim; Sunggil Kim; J. Y. Song; Yong Weon Seo; Byung-Moo Lee; Si-Yong Kang
The Kunitz trypsin inhibitor (KTi) in soybean has several polymorphic types that are controlled by multiple alleles, which behave in a co-dominant fashion. Of these, Tia and Tib, which differ by nine amino acids, are the predominant types. In order to develop a single nucleotide amplified polymorphism (SNAP) marker for the classification of the predominant KTi types, Tia and Tib, and evaluate KTi activities by differing KTi type total 451 soybean mutant lines (M12–M16 generation) were incorporated in this study. Among 451 soybean mutants, 144 and 13 mutant lines showed decreased and increased trypsin inhibitor activity when compared with the original cultivars, respectively. To identify the KTi type, we designed a SNAP marker. Among 451 mutant lines from 12 soybean cultivars and landraces, 8 mutant lines derived from cvs. Baekwoon, Paldal and Suwon115 showed a change in KTi type when compared with the original cultivars using the SNAP marker. Five mutant lines in Suwon115 changed from Tib to Tia, while two mutant lines derived from cv. Baekwoon and one mutant line derived from cv. Paldal were changed from Tia to Tib. These changes of KTi types were confirmed by sequencing of the KTi genes and non-denaturing polyacrylamide gel electrophoresis of the KTi proteins. To identify the effect of KTi activity based on the change in KTi type, we measured the KTi activity using the three cultivars and eight mutant lines that showed changes in KTi type. Two mutant lines (BW-1 and 7-2) derived from cv. Baekwoon and one mutant line (PD-5-10) from cv. Paldal that changed from Tia to Tib showed lower activity than the original cultivar. In cv. Suwon115, five mutant lines that changed from Tib to Tia showed higher activity than the original cultivar. These results indicate that the designed SNAP marker was capable of identifying the KTi type and that Tia activity was higher than Tib activity in soybean.
Theoretical and Applied Genetics | 2009
Sunggil Kim; Doohyun Baek; Dong Youn Cho; Eul-Tai Lee; Moo-Kyoung Yoon
Two novel inactive alleles of Dihydroflavonol 4-reductase-A (DFR-A) were identified in yellow onion (Allium cepa L.) cultivars and breeding lines from Korea and Japan. Unlike the previously reported inactive yellow DFR-A allele, designated as DFR-ATRN, in which the 3′ portion of the coding sequences was deleted, an allele containing a premature stop codon, DFR-APS, was isolated from the majority of cultivars. Co-segregation of DFR-APS and color phenotypes in the F2 population from a cross between yellow and red parents showed that inactivation of DFR-A was responsible for lack of anthocyanin in these yellow onions. In addition, RT-PCR analysis of F2 population showed that the transcription level of the DFR-APS allele was significantly reduced owing to non-sense-mediated mRNA decay. A 20-bp deletion of a simple sequence repeat in the promoter region of the DFR-APS allele was used to develop a simple PCR-based molecular marker for selection of the DFR-APS allele. All genotypes of 138 F2 individuals were clearly distinguished by this molecular marker. In addition to the DFR-APS allele, another DFR-A allele, DFR-ADEL, was identified in some cultivars. In case of the DFR-ADEL allele, no PCR products were amplified throughout DFR-A sequences including promoter regions, suggesting deletion of the entire DFR-A gene. Co-segregation of the absence of DFR-A and color phenotypes was confirmed in another F2 population. Furthermore, RT-PCR results showed that no DFR-A transcript was detected in any yellow F2 individuals.