Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunggu Yang is active.

Publication


Featured researches published by Sunggu Yang.


Nature | 2012

Aberrant light directly impairs mood and learning through melanopsin-expressing neurons

Tara A. LeGates; Cara M. Altimus; Hui Wang; Hey Kyoung Lee; Sunggu Yang; Haiqing Zhao; Alfredo Kirkwood; E. Todd Weber; Samer Hattar

The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep–wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interlamellar CA1 network in the hippocampus

Sunggu Yang; Sungchil Yang; Thais Moreira; Gloria E. Hoffman; Greg C. Carlson; Kevin J. Bender; Bradley E. Alger; Cha-Min Tang

Significance It has generally been thought that CA1 cells form only negligible connections with each other along the longitudinal axis of the hippocampus. But if CA1 cells were interconnected in an effective autoassociational network, this information would add a critical new dimension to our understanding of cellular processing within this structure. Here, we report the existence of a well-organized, longitudinally projecting synaptic network among CA1 pyramidal neurons. We further show that synapses of this network are capable of supporting synaptic plasticity, including long-term potentiation, and a short-term memory mechanism called “dendritic hold and read.” These observations will contribute to the construction of more realistic models of hippocampal information processing in behavior, memory, and other cognitive functions. To understand the cellular basis of learning and memory, the neurophysiology of the hippocampus has been largely examined in thin transverse slice preparations. However, the synaptic architecture along the longitudinal septo-temporal axis perpendicular to the transverse projections in CA1 is largely unknown, despite its potential significance for understanding the information processing carried out by the hippocampus. Here, using a battery of powerful techniques, including 3D digital holography and focal glutamate uncaging, voltage-sensitive dye, two-photon imaging, electrophysiology, and immunohistochemistry, we show that CA1 pyramidal neurons are connected to one another in an associational and well-organized fashion along the longitudinal axis of the hippocampus. Such CA1 longitudinal connections mediate reliable signal transfer among the pyramidal cells and express significant synaptic plasticity. These results illustrate a need to reconceptualize hippocampal CA1 network function to include not only processing in the transverse plane, but also operations made possible by the longitudinal network. Our data will thus provide an essential basis for future computational modeling studies on information processing operations carried out in the full 3D hippocampal network that underlies its complex cognitive functions.


The Journal of Neuroscience | 2013

Integrity of mGluR-LTD in the associative/commissural inputs to CA3 correlates with successful aging in rats

Sunggu Yang; Andrea Megill; Alvaro O. Ardiles; Sarah Ransom; Trinh Tran; Ming Teng Koh; Hey Kyoung Lee; Michela Gallagher; Alfredo Kirkwood

The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that individual differences in cognitive aging are more strongly tied to functional alterations in CA3 circuits. To examine synaptic plasticity in the CA3 region, we used aged rats behaviorally characterized in a hippocampal-dependent task to evaluate the status of long-term potentiation and long-term depression (LTP and LTD) in the associative/commissural pathway (A/C→CA3), which provides the majority of excitatory input to CA3 pyramidal neurons. We found that, unlike in CA1 synapses, in A/C→CA3 LTP is minimally affected by age. However, two forms of LTD, involving NMDA and metabotropic glutamate receptors (mGluR), are both greatly reduced in age-impaired rats. Age-unimpaired rats, in contrast, had intact mGluR LTD. These findings indicate that the integrity of mGluR-LTD at A/C→CA3 inputs may play a crucial role in maintaining the performance of CA3 circuitry in aging.


The Journal of Neuroscience | 2016

Metabotropic Glutamate Receptors Induce a Form of LTP Controlled by Translation and Arc Signaling in the Hippocampus

Hui Wang; Alvaro O. Ardiles; Sunggu Yang; Trinh Tran; Rafael Posada-Duque; Gonzalo Valdivia; Min Baek; Yang An Chuang; Adrian G. Palacios; Michela Gallagher; Paul F. Worley; Alfredo Kirkwood

Activity-dependent bidirectional modifications of excitatory synaptic strength are essential for learning and storage on new memories. Research on bidirectional synaptic plasticity has largely focused on long-term potentiation (LTP) and long-term depression (LTD) mechanisms that rely on the activation of NMDA receptors. In principle, metabotropic glutamate receptors (mGluRs) are also suitable to convert synaptic activity into intracellular signals for synaptic modification. Indeed, dysfunction of a form of LTD that depends on Type I mGluRs (mGluR-LTD), but not NMDARs, has been implicated in learning deficits in aging and mouse models of several neurological conditions, including Fragile X syndrome and Alzheimers disease. To determine whether mGluR activation can also induce LTP in the absence of NMDAR activation, we examined in hippocampal slices from rats and mice, an NMDAR-independent form of LTP previously characterized as dependent on voltage-gated Ca2+ channels. We found that this form of LTP requires activation of Type I mGluRs and, like mGluR-LTD but unlike NMDAR-dependent plasticity, depends crucially on protein synthesis controlled by fragile X mental retardation protein and on Arc signaling. Based on these observations, we propose the coexistence of two distinct activity-dependent systems of bidirectional synaptic plasticity: one that is based on the activity of NMDARs and the other one based on the activation of mGluRs. SIGNIFICANCE STATEMENT Bidirectional changes of synaptic strength are crucial for the encoding of new memories. Currently, the only activity-dependent mechanism known to support such bidirectional changes are long-term potentiation (LTP) and long-term depression (LTD) forms that relay on the activation of NMDA receptors. Metabotropic glutamate receptors (mGluRs) are, in principle, also suitable to trigger bidirectional synaptic modifications. However, only the mGluR-dependent form of LTD has been characterized. Here we report that an NMDAR-independent form of LTP, initially characterized as dependent on voltage-gated Ca2+ channels, also requires the activation of mGluRs. These finding suggest the coexistence of two distinct activity-dependent systems of bidirectional synaptic plasticity: one that is based on the activity of NMDARs and the other one based on the activation of mGluRs.


The Journal of Neuroscience | 2014

Associative Hebbian synaptic plasticity in primate visual cortex.

Shiyong Huang; Carlos Rozas; Mario Treviño; Jessica Contreras; Sunggu Yang; Lihua Song; Takashi Yoshioka; Hey Kyoung Lee; Alfredo Kirkwood

In primates, the functional connectivity of adult primary visual cortex is susceptible to be modified by sensory training during perceptual learning. It is widely held that this type of neural plasticity might involve mechanisms like long-term potentiation (LTP) and long-term depression (LTD). NMDAR-dependent forms of LTP and LTD are particularly attractive because in rodents they can be induced in a Hebbian manner by near coincidental presynaptic and postsynaptic firing, in a paradigm termed spike timing-dependent plasticity (STDP). These fundamental properties of LTP and LTD, Hebbian induction and NMDAR dependence, have not been examined in primate cortex. Here we demonstrate these properties in the primary visual cortex of the rhesus macaque (Macaca mulatta), and also show that, like in rodents, STDP is gated by neuromodulators. These findings indicate that the cellular principles governing cortical plasticity are conserved across mammalian species, further validating the use of rodents as a model system.


The Journal of Physiology | 2008

Excitatory and anti-oscillatory actions of nitric oxide in thalamus

Sunggu Yang; Charles L. Cox

The dorsal lateral geniculate nucleus (dLGN) not only serves as the obligatory pathway for visual information transfer from the retina to neocortex but can also generate intrathalamic rhythmic activities associated with different arousal states and certain pathological conditions. The gating activity of thalamocortical circuits is under neuromodulatory control by various brainstem nuclei as well as intrinsic thalamic neurons (e.g. thalamic reticular nucleus (TRN) neurons and dLGN interneurons). In this study, we examined the effect of the putative neuromodulator nitric oxide (NO) on thalamic neuron excitability. There are multiple potential sources of NO in thalamus: cholinergic terminals originating from brainstem nuclei, GABAergic TRN neurons, and local GABAergic interneurons. Using whole cell recording techniques in in vitro thalamic slices, we found that the NO donor SNAP produced a robust, long‐lasting depolarization in TRN neurons, a weaker depolarization in thalamocortical relay neurons, and no effect in local interneurons. SNAP preferentially depolarized stereotypical TRN neurons that could produced strong burst discharge. In contrast, SNAP had little effect on atypical burst and non‐burst TRN cells. The NO donor SIN‐1 and the endogenous NO precursor, l‐arginine, mimicked the SNAP‐mediated actions. The NO‐mediated depolarizations were blocked by the guanylyl cyclase inhibitor ODQ indicating involvement of the cGMP pathway. In addition, the phosphodiesterase (PDE) inhibitor zaprinast depolarized and occluded the NO‐mediated depolarization in TRN neurons. At the circuit level, NO activation significantly attenuated intrathalamic rhythmic activities likely resulting from the shifting of the firing mode of thalamic neurons, perhaps both TRN and thalamocortical neurons, from burst‐ to tonic‐discharge mode. These alterations in thalamic neuron excitability not only change rhythmic circuit activity, but could also influence sensory information processing through thalamocortical circuits.


Synapse | 2011

Attenuation of inhibitory synaptic transmission by glial dysfunction in rat thalamus

Sunggu Yang; Charles L. Cox

The thalamus serves as the obligatory gateway to the neocortex for sensory processing, and also serves as a pathway for corticocortical communication. In addition, the reciprocal synaptic connectivity between the thalamic reticular nucleus (TRN) and adjacent thalamic relay nuclei generates rhythmic activities similar to that observed during different arousal states and certain neurological conditions such as absence epilepsy. Epileptiform activity can arise from a variety of neural mechanisms, but in addition glia are thought to have an important role in such activities as well. Glia serve a central role in glutamine synthesis, a precursor for glutamate or GABA in nerve terminals. While alterations in glutamine shuttling from glia to neurons can influence GABA and glutamate neurotransmission; the consequences of such action on synaptic transmission and subsequent network activities within thalamic circuits is less understood. We investigated the consequences of altering glutamine transport on inhibitory transmission and intrathalamic activities using the in vitro thalamic slice preparation. Disruption of the glutamine shuttling by the neuronal glutamine transporter (system A transporter) antagonist, α‐(methylamino)isobutyric acid (MeAIB), or the selective gliotoxic drug, fluorocitric acid (Fc) dramatically decreased intrathalamic rhythmic activities. At the single cell level, MeAIB and Fc significantly attenuated electrically evoked inhibitory postsynaptic currents (eIPSCs) in thalamic relay neurons; however, miniature IPSCs were unaffected. These data indicate that glutamate‐glutamine shuttle is critical for sustaining thalamic synaptic transmission, and thereby alterations in this shuttle can influence intrathalamic rhythmic activities associated with absence epilepsy. Synapse, 2011.


PLOS ONE | 2014

Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice.

Sungchil Yang; Sunggu Yang; Jae Sung Park; Alfredo Kirkwood; Shaowen Bao

Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP) is impaired in the developing auditory cortex of the Fmr1 knockout (KO) mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.


PLOS ONE | 2012

Dendritic hold and read: a gated mechanism for short term information storage and retrieval.

Máriton D. Santos; Michael Mohammadi; Sunggu Yang; Conrad W. Liang; Joseph P. Y. Kao; Bradley E. Alger; Scott M. Thompson; Cha-Min Tang

Two contrasting theories have been proposed to explain the mechanistic basis of short term memory. One theory posits that short term memory is represented by persistent neural activity supported by reverberating feedback networks. An alternate, more recent theory posits that short term memory can be supported by feedforward networks. While feedback driven memory can be implemented by well described mechanisms of synaptic plasticity, little is known of possible molecular and cellular mechanisms that can implement feedforward driven memory. Here we report such a mechanism in which the memory trace exists in the form of glutamate-bound but Mg2+-blocked NMDA receptors on the thin terminal dendrites of CA1 pyramidal neurons. Because glutamate dissociates from subsets of NMDA receptors very slowly, excitatory synaptic transmission can leave a silent residual trace that outlasts the electrical activity by hundreds of milliseconds. Read-out of the memory trace is possible if a critical level of these bound-but-blocked receptors accumulates on a dendritic branch that will allow these quasi-stable receptors to sustain a regenerative depolarization when triggered by an independent gating signal. This process is referred to here as dendritic hold and read (DHR). Because the read-out of the input is not dependent on repetition of the input and information flows in a single-pass manner, DHR can potentially support a feedforward memory architecture.


Frontiers in Cellular Neuroscience | 2015

The Shaping of Two Distinct Dendritic Spikes by A-Type Voltage-Gated K(+) Channels.

Sungchil Yang; Cha-Min Tang; Sunggu Yang

Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs) have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductance coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key modulator for two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the regenerative Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer’s disease.

Collaboration


Dive into the Sunggu Yang's collaboration.

Top Co-Authors

Avatar

Sungchil Yang

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hey Kyoung Lee

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Samer Hattar

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hansung Kim

Incheon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge