Sungwoo Yang
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sungwoo Yang.
Science | 2017
Hyunho Kim; Sungwoo Yang; Sameer R. Rao; Shankar Narayanan; Eugene A. Kapustin; Hiroyasu Furukawa; Ari Umans; Omar M. Yaghi; Evelyn N. Wang
Solar heat helps harvest humidity Atmospheric humidity and droplets constitute a huge freshwater resource, especially at the low relative humidity (RH) levels typical of arid environments. Water can be adsorbed by microporous materials such as zeolites, but often, making these materials release the water requires too much energy to be practical. Kim et al. used a metal-organic framework (MOF) material that has a steep increase in water uptake over a narrow RH range to harvest water, using only ambient sunlight to heat the material. They obtained 2.8 liters of water per kilogram of MOF daily at 20% RH. Science, this issue p. 430 Efficient extraction is enabled by a steep increase in water uptake within a narrow range of relative humidity. Atmospheric water is a resource equivalent to ~10% of all fresh water in lakes on Earth. However, an efficient process for capturing and delivering water from air, especially at low humidity levels (down to 20%), has not been developed. We report the design and demonstration of a device based on a porous metal-organic framework {MOF-801, [Zr6O4(OH)4(fumarate)6]} that captures water from the atmosphere at ambient conditions by using low-grade heat from natural sunlight at a flux of less than 1 sun (1 kilowatt per square meter). This device is capable of harvesting 2.8 liters of water per kilogram of MOF daily at relative humidity levels as low as 20% and requires no additional input of energy.
Applied Categorical Structures | 2017
Adam J. Rieth; Sungwoo Yang; Evelyn N. Wang; Mircea Dincă
The capture of water vapor at low relative humidity is desirable for producing potable water in desert regions and for heat transfer and storage. Here, we report a mesoporous metal–organic framework that captures 82% water by weight below 30% relative humidity. Under simulated desert conditions, the sorbent would deliver 0.82 gH2O gMOF–1, nearly double the quantity of fresh water compared to the previous best material. The material further demonstrates a cooling capacity of 400 kWh m–3 per cycle, also a record value for a sorbent capable of creating a 20 °C difference between ambient and output temperature. The water uptake in this sorbent is optimized: the pore diameter of our material is above the critical diameter for water capillary action, enabling water uptake at the limit of reversibility.
Scientific Reports | 2016
Hyunho Kim; H. Jeremy Cho; Shankar Narayanan; Sungwoo Yang; Hiroyasu Furukawa; Scott N. Schiffres; Xiansen Li; Yue-Biao Zhang; Juncong Jiang; Omar M. Yaghi; Evelyn N. Wang
Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.
AIP Advances | 2016
Lin Zhao; Sungwoo Yang; Bikram Bhatia; Elise Strobach; Evelyn N. Wang
Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2013
Shankar Narayanan; Xiansen Li; Sungwoo Yang; Ian S. McKay; Hyunho Kim; Evelyn N. Wang
Electric vehicle (EV) technology faces a substantial challenge in terms of driving range, especially when the vehicle’s climate control system relies entirely on the onboard electric battery. Therefore, we are developing an advanced adsorption-based thermal battery (ATB) capable of delivering both heating and cooling for electric vehicles with minimal use of the electric battery bank. While adsorption based climate control systems offer the advantage of direct usage of primary thermal energy sources for operation, they typically have low COP values, and are often bulky and heavy. A compact and lightweight ATB is necessary to replace existing climate control systems in EVs that use electric battery for operation. In this paper, we present a detailed computational analysis of adsorption kinetics taking place within an adsorption bed that is capable of delivering large cooling and heating capacities by making use of novel adsorbents. The overall design of the adsorption bed, which is a critical element in achieving a high performance thermal battery, is also discussed. To make performance predictions, we characterized the adsorbents to obtain their thermophysical and transport properties as well as adsorption characteristics. The model consequently incorporates these measured properties to predict the performance variation as a function of time. This work provides the critical parameters affecting heating and cooling rates, and identifies avenues for further improvement in the overall performance of the thermal battery. NOMENCLATURE
Science | 2017
Hyunho Kim; Sameer R. Rao; Shankar Narayanan; Eugene A. Kapustin; Sungwoo Yang; Hiroyasu Furukawa; Ari Umans; Omar M. Yaghi; Evelyn N. Wang
In their comment, Bui et al. argue that the approach we described in our report is vastly inferior in efficiency to alternative off-the-shelf technologies. Their conclusion is invalid, as they compare efficiencies in completely different operating conditions. Here, using heat transfer and thermodynamics principles, we show how Bui et al.’s conclusions about the efficiencies of off-the-shelf technologies are fundamentally flawed and inaccurate for the operating conditions described in our study.
ASME 2013 International Mechanical Engineering Congress and Exposition | 2013
Hyunho Kim; Sungwoo Yang; Shankar Narayanan; Ian S. McKay; Evelyn N. Wang
Thermal energy storage has received significant interest for delivering both heating and cooling in electric vehicles, to minimize the use of the on-board electric batteries for heating, ventilation and air-conditioning (HVAC). An advanced thermo-adsorptive battery (ATB) is currently being developed, to provide both heating and cooling for an electric vehicle. We present a detailed thermophysical and physicochemical characterization of adsorptive materials for the development of the ATB. We discuss the feasibility of using contemporary adsorptive materials, such as zeolite 13X, by carrying out a detailed experimental characterization. In this study, zeolite 13X is combined with aluminum hydroxide (Al(OH)3) as a binder to improve the thermal conductivity. We also investigate the effect of densification on the overall transport characteristics of the adsorbent-binder composite material. Accordingly, the effective thermal conductivity, surface area, adsorption capacity and surface chemistry were characterized using the laser flash technique, surface sorption analyzer, thermogravimetric analyzer, and x-ray scattering technique. Thermal conductivity predictions of both zeolite 13X and its combination with the binder were made with existing conductivity models. Thermal conductivity in excess of 0.4 W/mK was achieved with the addition of 6.4 wt.% of Al(OH)3. However, a 10.6 % decrease in adsorption capacity was also observed. The experimental characterization presented herein is an essential step towards the development of the proposed ATB for next-generation electric vehicles.Copyright
International Journal of Heat and Mass Transfer | 2014
Shankar Narayanan; Sungwoo Yang; Hyunho Kim; Evelyn N. Wang
Applied Energy | 2015
Shankar Narayanan; Xiansen Li; Sungwoo Yang; Hyunho Kim; Ari Umans; Ian S. McKay; Evelyn N. Wang
Journal of Non-crystalline Solids | 2017
Elise Strobach; Bikram Bhatia; Sungwoo Yang; Lin Zhao; Evelyn N. Wang