Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sungyoung Choi is active.

Publication


Featured researches published by Sungyoung Choi.


Lab on a Chip | 2005

Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array

Sungyoung Choi; Je-Kyun Park

This paper presents a novel microfluidic device for dielectrophoretic separation based on a trapezoidal electrode array (TEA). In this method, particles with different dielectric properties are separated by the device composed of the TEA for the dielectrophoretic deflection of particles under negative dielectrophoresis (DEP) and poly(dimethylsiloxane)(PDMS) microfluidic channel with a sinuous and expanded region. Polystyrene microparticles are exposed to an electric field generated from the TEA in the microfluidic channel and are dielectrophoretically focused to make all of them line up to one sidewall. When these particles arrive at the region of another TEA for dielectrophoretic separation, they are separated having different positions along the perpendicular direction to the fluid flow due to their different dielectrophoretic velocities. To evaluate the separation process and performance, both the effect of the flow rate on dielectrophoretic focusing and the influence of the number of trapezoidal electrodes on dielectrophoretic separation are investigated. Now that this method utilizes the TEA as a source of negative DEP, non-specific particle adhering to the electrode surface can be prevented; conventional separation approaches depending on the positive DEP force suffer from this problem. In addition, since various particle types are continuously separated, this method can be easily applicable to the separation and analysis of various dielectric particles with high particle recovery and selectivity.


Lab on a Chip | 2007

Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.

Sungyoung Choi; Je-Kyun Park

We report a microfluidic separation and sizing method of microparticles with hydrophoresis--the movement of suspended particles under the influence of a microstructure-induced pressure field. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along the lateral flows induced by the gradient. Using such movements of particles, we completely separated polystyrene microbeads with 9 and 12 microm diameters. Also, we discriminated polystyrene microbeads with diameter differences of approximately 7.3%. Additionally, we measured the diameter of 10.4 microm beads with high coefficient of variation and compared the result with a conventional laser diffraction method. The slanted obstacle as a microfluidic control element in a microchannel is analogous to the electric, magnetic, optical, or acoustic counterparts in that their function is to generate a field gradient. Since our method is based on intrinsic pressure fields, we could eliminate the need for external potential fields to induce the movement of particles. Therefore, our hydrophoretic method will offer a new opportunity for power-free and biocompatible particle control within integrated microfluidic devices.


Analytical Chemistry | 2013

Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.

Myung Gwon Lee; Joong Ho Shin; Chae Yun Bae; Sungyoung Choi; Je-Kyun Park

We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.


Lab on a Chip | 2009

Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device

Myung Gwon Lee; Sungyoung Choi; Je-Kyun Park

We report a contraction-expansion array (CEA) microchannel that allows three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer device. The CEA microchannel exploits centrifugal forces acting on fluids travelling along the contraction and expansion regions of the microchannel. Around an entrance of the contraction region, the centrifugal forces induce a secondary flow field where two counter-rotating vortices enable to envelop a sample flow with a sheath flow in three dimensions. We herein describe an underlying principle and a design of the CEA microchannel and demonstrate complete sheathing of a sample fluid (water and human red blood cells) in three dimensions. The focusing characteristics of the CEA microchannel are investigated in terms of the number of the rectangular structures, flow rate, and flow ratio between sample and sheath flows. This microfluidic channel for three-dimensional hydrodynamic focusing is easy to fabricate in a single-layer fabrication process and simple to operate with a single sheath flow.


Analytical Chemistry | 2009

Microfluidic Self-Sorting of Mammalian Cells to Achieve Cell Cycle Synchrony by Hydrophoresis

Sungyoung Choi; Seungjeong Song; Chulhee Choi; Je-Kyun Park

Cell cycle studies for examining regulatory mechanisms and progression invariably require synchronization of cell cultures at a specific phase of the cell cycle. Current implementations to produce synchronous cell populations, however, tend to perturb normal cellular progression and metabolism and typically require complex, time-consuming preparations. Thus, it is challenging for the development of a simple, noninvasive, and effective means for cell cycle synchronization. We demonstrate the use of hydrophoretic size separation to sort cells in target phases of the cell cycle entirely based on a hydrodynamic principle. With this method, we found that there is a linear relationship between a cells size and its position distribution in the hydrophoretic device. We also demonstrate the robustness of the hydrophoretic method for practical applications by sorting cells in the G(0)/G(1) and G(2)/M phases out of the original, asynchronous cells with a high level of synchrony of 95.5% and 85.2%, respectively. These results show that the hydrophoretic size separation can be used in order to collect cells at the same phase of the cell cycle in a gentle, noninvasive way.


Small | 2008

Sheathless Focusing of Microbeads and Blood Cells Based on Hydrophoresis

Sungyoung Choi; Seungjeong Song; Chulhee Choi; Je-Kyun Park

This paper presents a microfluidic device for sheathless focusing of microbeads and blood cells based on a hydrophoretic platform comprising a V-shaped obstacle array (VOA). The VOA generates lateral pressure gradients that induce helical recirculations. Following the focusing flow particles passing through the VOA are focused in the center of the channel. In the device, the focusing pattern can be modulated by varying the gap height of the VOA. To achieve complete focusing within 4.4% coefficient of variation, the relative size differences between the gap and the particle were 3 and 4 microm for 10 and 15 microm beads, respectively. Red blood cells were used to study the hydrophoretic focusing pattern of biconcave, disk-shaped particles.


Journal of Chromatography A | 2011

Inertial separation in a contraction-expansion array microchannel.

Myung Gwon Lee; Sungyoung Choi; Je-Kyun Park

We report a contraction-expansion array (CEA) microchannel that allows inertial size separation by a force balance between inertial lift and Dean drag forces in fluid regimes in which inertial fluid effects become significant. An abrupt change of the cross-sectional area of the channel curves fluid streams and produces a similar effect compared to Dean flows in a curved microchannel of constant cross-section, thereby inducing Dean drag forces acting on particles. In addition, the particles are influenced by inertial lift forces throughout the contraction regions. These two forces act in opposite directions each other throughout the CEA microchannel, and their force balancing determines whether the particles cross the channel, following Dean flows. Here we describe the physics and design of the CEA microfluidic device, and demonstrate complete separation of microparticles (polystyrene beads of 4 and 10 μm in diameter) and efficient exchange of the carrier medium while retaining 10 μm beads.


Analytical Chemistry | 2009

Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles.

Sungyoung Choi; Seungjeong Song; Chulhee Choi; Je-Kyun Park

We describe a hydrophoretic device that uses rotational flows induced by regularly patterned obstacles only on the top wall for preparing samples of biological particles, including micrometer and submicrometer particles, and DNA molecules. Many of the current continuous separation devices based on physical fields are limited to the separation of cells and micrometer-sized particles due to their dependence on a particle volume, and the purely hydrodynamic separation of macromolecules such as DNA or protein complexes remains a challenge. Hydrophoresis is entirely based on hydrodynamics using rotational flows induced by anisotropic obstacles. Different sizes of micrometer and submicrometer beads, as well as DNA molecules, were separated into distinct trajectories using two kinds of hindrance mechanisms. Continuous separation of these particles was achieved using the obstacles, demonstrating the potential of hydrophoresis for biological sample preparation on the micro- and nanoscales, with the advantages of continuous flow and sheathless passive operation.


Analytical Chemistry | 2008

Sheathless Hydrophoretic Particle Focusing in a Microchannel with Exponentially Increasing Obstacle Arrays

Sungyoung Choi; Je-Kyun Park

We present a novel microfluidic device with exponentially increasing obstacle arrays to enable sheathless particle focusing. The anisotropic fluidic resistance of slant obstacles generates transverse flows, along which particles are focused to one sidewall. In the successive channel with exponentially increasing widths, bent obstacles extended from the slant obstacles increase the focusing efficiency of the particles. With the device, we achieved the focusing efficiency of 76%, 94%, and 98% for 6, 10, and 15 microm beads, respectively. The focusing efficiency of the particles can be further improved in the devices with more extension steps. In addition, using the microfluidic devices with the symmetric structure of the slant and bent obstacles, we achieved complete focusing of biological cells to the centerline of a channel within 1.7% coefficient of variation. The results demonstrated the sheathless hydrophoretic focusing of microparticles and cells with the advantages of a sheathless method, passive operation, single channel, and flow rate independence.


Applied Physics Letters | 2011

Inertial blood plasma separation in a contraction–expansion array microchannel

Myung Gwon Lee; Sungyoung Choi; Hee-Je Kim; Hee Kyun Lim; Joon-Ho Kim; Nam Huh; Je-Kyun Park

Continuous inertial blood plasma separation is demonstrated in a contraction–expansion array microchannel with a low aspect ratio (AR). The separation cutoff value of the particle size can be controlled by modulation of the force balance between inertial lift and Dean drag forces. The modulation is achieved by changing the channel AR at contraction region, which causes the change in magnitudes of the inertial lift forces on the particles. The presented blood plasma separator provides a level of yield and throughput of 62.2% and 1.2 ml/h(∼1.0×108 cells/min), respectively.

Collaboration


Dive into the Sungyoung Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sein Oh

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar

D. E. Aspnes

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Norman

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge