Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunia A. Trauger is active.

Publication


Featured researches published by Sunia A. Trauger.


Therapeutic Drug Monitoring | 2005

METLIN : A metabolite mass spectral database

Colin A. Smith; Grace O'Maille; Elizabeth J. Want; Chuan Qin; Sunia A. Trauger; Theodore R. Brandon; Darlene E. Custodio; Ruben Abagyan; Gary Siuzdak

Endogenous metabolites have gained increasing interest over the past 5 years largely for their implications in diagnostic and pharmaceutical biomarker discovery. METLIN (http://metlin.scripps.edu), a freely accessible web-based data repository, has been developed to assist in a broad array of metabolite research and to facilitate metabolite identification through mass analysis. METLIN includes an annotated list of known metabolite structural information that is easily cross-correlated with its catalogue of high-resolution Fourier transform mass spectrometry (FTMS) spectra, tandem mass spectrometry (MS/MS) spectra, and LC/MS data.


Nature Chemical Biology | 2010

Metabolic oxidation regulates embryonic stem cell differentiation

Oscar Yanes; Julie Clark; Diana M Wong; Gary J. Patti; Antonio Sánchez-Ruiz; H. Paul Benton; Sunia A. Trauger; Caroline Desponts; Sheng Ding; Gary Siuzdak

Metabolites offer an important unexplored complement to understanding the pluripotency of stem cells. Using mass spectrometry-based metabolomics, we show that embryonic stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. By monitoring the reduced and oxidized glutathione ratio as well as ascorbic acid levels, we demonstrate that the stem cell redox status is regulated during differentiation. Based on the oxidative biochemistry of the unsaturated metabolites, we experimentally manipulated specific pathways in embryonic stem cells while monitoring the effects on differentiation. Inhibition of the eicosanoid signaling pathway promoted pluripotency and maintained levels of unsaturated fatty acids. In contrast, downstream oxidized metabolites (e.g., neuroprotectin D1) and substrates of pro-oxidative reactions (e.g., acyl-carnitines), promoted neuronal and cardiac differentiation. We postulate that the highly unsaturated metabolome sustained by stem cells makes them particularly attuned to differentiate in response to in vivo oxidative processes such as inflammation.


Nature | 2010

Microbial metalloproteomes are largely uncharacterized

Aleksandar Cvetkovic; Angeli Lal Menon; Michael P. Thorgersen; Joseph W. Scott; Farris L. Poole; Francis E. Jenney; W. Andrew Lancaster; Jeremy L. Praissman; Saratchandra Shanmukh; Brian J. Vaccaro; Sunia A. Trauger; Ewa Kalisiak; Junefredo V. Apon; Gary Siuzdak; Steven M. Yannone; John A. Tainer; Michael W. W. Adams

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Nature | 2014

The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR

Randall M. Chin; Xudong Fu; Melody Y. Pai; Laurent Vergnes; Heejun Hwang; Gang Deng; Simon Diep; Brett Lomenick; Vijaykumar S. Meli; Gabriela C. Monsalve; Eileen Hu; Stephen A. Whelan; Jennifer X. Wang; Gwanghyun Jung; Gregory M. Solis; Farbod Fazlollahi; Chitrada Kaweeteerawat; Austin Quach; Mahta Nili; Abby S. Krall; Hilary A. Godwin; Helena R. Chang; Kym F. Faull; Feng Guo; Meisheng Jiang; Sunia A. Trauger; Alan Saghatelian; Daniel Braas; Heather R. Christofk; Catherine F. Clarke

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Journal of Virology | 2004

Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis

Eugene Wu; Sunia A. Trauger; Lars Pache; Tina-Marie Mullen; Daniel J. Von Seggern; Gary Siuzdak; Glen R. Nemerow

ABSTRACT Subgroup D adenovirus (Ad) types 8, 19, and 37 (Ad8, -19, and -37, respectively) are causative agents of epidemic keratoconjunctivitis and genital tract infections. Previous studies showed that Ad37 binds to a 50-kDa membrane glycoprotein expressed on human ocular (conjunctival) cells. To identify and characterize the role of the 50-kDa glycoprotein in Ad37 infection, we partially purified this molecule from solubilized Chang C conjunctival cell membranes by using lentil lectin chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liquid chromatography coupled to nano-electrospray ionization-tandem mass spectrometry was subsequently used to identify four Ad37 receptor candidates: CD46, CD87, CD98, and CD147. Immunodepletion analyses demonstrated that the 50-kDa protein is identical to CD46 (also known as membrane cofactor protein). The Ad37, but not Ad5, fiber knob bound to the extracellular domain of CD46, demonstrating a direct interaction of an Ad37 capsid protein with CD46. An antibody specific for the N-terminal 19 amino acids of CD46 also blocked Ad37 infection of human cervical carcinoma and conjunctival cells, indicating a requirement for CD46 in infection. Finally, expression of a 50-kDa isoform of human CD46 in a CD46-null cell line increased cell binding by wild-type Ad37 and gene delivery by an Ad vector pseudotyped with the Ad37 fiber, but not by a vector bearing the Ad5 fiber. Together, these studies demonstrate that CD46 serves as an attachment receptor for Ad37 and shed further light on the cell entry pathway of subgroup D Ads.


Journal of Biological Chemistry | 2009

Increased Enzymatic O-GlcNAcylation of Mitochondrial Proteins Impairs Mitochondrial Function in Cardiac Myocytes Exposed to High Glucose

Yong Hu; Jorge Suarez; Eduardo Fricovsky; Hong Wang; Brian T. Scott; Sunia A. Trauger; Wenlong Han; Ying Hu; Mary O. Oyeleye; Wolfgang H. Dillmann

Increased nuclear protein O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) mediated by high glucose treatment or the hyperglycemia of diabetes mellitus contributes to cardiac myocyte dysfunction. However, whether mitochondrial proteins in cardiac myocytes are also submitted to O-GlcNAcylation or excessive O-GlcNAcylation alters mitochondrial function is unknown. In this study, we determined if mitochondrial proteins are O-GlcNAcylated and explored if increased O-GlcNAcylation is linked to high glucose-induced mitochondrial dysfunction in neonatal rat cardiomyocytes. By immunoprecipitation, we found that several mitochondrial proteins, which are members of complexes of the respiratory chain, like subunit NDUFA9 of complex I, subunits core 1 and core 2 of complex III, and the mitochondrial DNA-encoded subunit I of complex IV (COX I) are O-GlcNAcylated. By mass spectrometry, we identified that serine 156 on NDUFA9 is O-GlcNAcylated. High glucose treatment (30 mm glucose) increases mitochondrial protein O-GlcNAcylation, including those of COX I and NDUFA9 which are reduced by expression of O-GlcNAcase (GCA). Increased mitochondrial O-GlcNAcylation is associated with impaired activity of complex I, III, and IV in addition to lower mitochondrial calcium and cellular ATP content. When the excessive O-GlcNAc modification is reduced by GCA expression, mitochondrial function improves; the activity of complex I, III, and IV increases to normal and mitochondrial calcium and cellular ATP content are returned to control levels. From these results we conclude that specific mitochondrial proteins of cardiac myocytes are O-GlcNAcylated and that exposure to high glucose increases mitochondrial protein O-GlcNAcylation, which in turn contributes to impaired mitochondrial function.


Nature Medicine | 2014

Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation

Lior Mayo; Sunia A. Trauger; Manon Blain; Meghan Nadeau; Bonny Patel; Jorge Ivan Alvarez; Ivan D. Mascanfroni; Ada Yeste; Pia Kivisäkk; Keith Kallas; Benjamin Ellezam; Rohit Bakshi; Alexandre Prat; Jack P. Antel; Howard L. Weiner; Francisco J. Quintana

Astrocytes have complex roles in health and disease, thus it is important to study the pathways that regulate their function. Here we report that lactosylceramide (LacCer) synthesized by β-1,4-galactosyltransferase 6 (B4GALT6) is upregulated in the central nervous system (CNS) of mice during chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). LacCer acts in an autocrine manner to control astrocyte transcriptional programs that promote neurodegeneration. In addition, LacCer in astrocytes controls the recruitment and activation of microglia and CNS-infiltrating monocytes in a non–cell autonomous manner by regulating production of the chemokine CCL2 and granulocyte-macrophage colony–stimulating factor (GM-CSF), respectively. We also detected high B4GALT6 gene expression and LacCer concentrations in CNS MS lesions. Inhibition of LacCer synthesis in mice suppressed local CNS innate immunity and neurodegeneration in EAE and interfered with the activation of human astrocytes in vitro. Thus, B4GALT6 regulates astrocyte activation and is a potential therapeutic target for MS and other neuroinflammatory disorders.


PLOS Pathogens | 2009

Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin

Kristopher J. Koudelka; Giuseppe Destito; Emily M. Plummer; Sunia A. Trauger; Gary Siuzdak; Marianne Manchester

Cowpea mosaic virus (CPMV) is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC

Jacqueline L. Blankman; Jonathan Z. Long; Sunia A. Trauger; Gary Siuzdak; Benjamin F. Cravatt

Advances in human genetics are leading to the discovery of new disease-causing mutations at a remarkable rate. Many such mutations, however, occur in genes that encode for proteins of unknown function, which limits our molecular understanding of, and ability to devise treatments for, human disease. Here, we use untargeted metabolomics combined with a genetic mouse model to determine that the poorly characterized serine hydrolase α/β-hydrolase domain-containing (ABHD)12, mutations in which cause the human neurodegenerative disorder PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and cataract), is a principal lysophosphatidylserine (LPS) lipase in the mammalian brain. ABHD12−/− mice display massive increases in a rare set of very long chain LPS lipids that have been previously reported as Toll-like receptor 2 activators. We confirm that recombinant ABHD12 protein exhibits robust LPS lipase activity, which is also substantially reduced in ABHD12−/− brain tissue. Notably, elevations in brain LPS lipids in ABHD12−/− mice occur early in life (2–6 mo) and are followed by age-dependent increases in microglial activation and auditory and motor defects that resemble the behavioral phenotypes of human PHARC patients. Taken together, our data provide a molecular model for PHARC, where disruption of ABHD12 causes deregulated LPS metabolism and the accumulation of proinflammatory lipids that promote microglial and neurobehavioral abnormalities.


Glia | 2010

Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy

Michael I. Dorrell; Edith Aguilar; Ruth Jacobson; Sunia A. Trauger; Jeffrey Friedlander; Gary Siuzdak; Martin Friedlander

Astrocytes are well known modulators of normal developmental retinal vascularization. However, relatively little is known about the role of glial cells during pathological retinal neovascularization (NV), a leading contributor to vision loss in industrialized nations. We demonstrate that the loss of astrocytes and microglia directly correlates with the development of pathological NV in a mouse model of oxygen‐induced retinopathy (OIR). These two distinct glial cell populations were found to have cooperative survival effects in vitro and in vivo. The intravitreal injection of myeloid progenitor cells, astrocytes, or astrocyte‐conditioned media rescued endogenous astrocytes from degeneration that normally occurs within the hypoxic, vaso‐obliterated retina following return to normoxia. Protection of the retinal astrocytes and microglia was directly correlated with accelerated revascularization of the normal retinal plexuses and reduction of pathological intravitreal NV normally associated with OIR. Using astrocyte‐conditioned media, several factors were identified that may contribute to the observed astrocytic protection and subsequent normalization of the retinal vasculature, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Injection of VEGF or bFGF at specific doses rescued the retinas from developing OIR‐associated pathology, an effect that was also preceded by protection of endogenous glia from hypoxia‐induced degeneration. Together, these data suggest that vascular‐associated glia are also required for normalized revascularization of the hypoxic retina. Methods developed to target and protect glial cells may provide a novel strategy by which normalized revascularization can be promoted and the consequences of abnormal NV in retinal vascular diseases can be prevented.

Collaboration


Dive into the Sunia A. Trauger's collaboration.

Top Co-Authors

Avatar

Gary Siuzdak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ewa Kalisiak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Eden P. Go

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darlene J. Elias

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge