Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunil Kochhar is active.

Publication


Featured researches published by Sunil Kochhar.


Molecular Systems Biology | 2007

A top‐down systems biology view of microbiome‐mammalian metabolic interactions in a mouse model

François-Pierre Martin; Marc-Emmanuel Dumas; Yulan Wang; Cristina Legido-Quigley; Ivan K. S. Yap; Huiru Tang; Severine Zirah; Gerard M. Murphy; Olivier Cloarec; John C. Lindon; Norbert Sprenger; Laurent B. Fay; Sunil Kochhar; Peter J. van Bladeren; Elaine Holmes; Jeremy K. Nicholson

Symbiotic gut microorganisms (microbiome) interact closely with the mammalian hosts metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short‐chain fatty acids in cecum by GC‐FID. Top‐down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the hosts ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro‐conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level.


Molecular Systems Biology | 2008

Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

François-Pierre Martin; Yulan Wang; Norbert Sprenger; Ivan K. S. Yap; Torbjörn Lundstedt; Per Lek; Serge Rezzi; Ziad Ramadan; Peter J. van Bladeren; Laurent B. Fay; Sunil Kochhar; John C. Lindon; Elaine Holmes; Jeremy K. Nicholson

The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ‐free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short‐chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top‐down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino‐acid metabolism, methylamines and SCFAs. The novel application of hierarchical‐principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top‐down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics.


Molecular Systems Biology | 2008

Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes

Sandrine P. Claus; Tsz M. Tsang; Yulan Wang; Olivier Cloarec; Eleni Skordi; François-Pierre Martin; Serge Rezzi; Alastair B. Ross; Sunil Kochhar; Elaine Holmes; Jeremy K. Nicholson

To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ‐free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well‐defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co‐metabolic products such as hippurate (urine) and 5‐aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo‐inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health‐care investigations.


Mbio | 2011

Colonization-Induced Host-Gut Microbial Metabolic Interaction

Sandrine P. Claus; S.L. Ellero; Bernard Berger; Lutz Krause; Anne Bruttin; J. Molina; Alain Paris; Elizabeth J. Want; I. de Waziers; Olivier Cloarec; Selena E. Richards; Yulan Wang; Marc-Emmanuel Dumas; Alastair B. Ross; Serge Rezzi; Sunil Kochhar; P.J. van Bladeren; John C. Lindon; Edward C. Holmes; Jeremy K. Nicholson

ABSTRACT The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism. Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.


Nature Biotechnology | 2005

Summary recommendations for standardization and reporting of metabolic analyses.

John C. Lindon; Jeremy K. Nicholson; Elaine Holmes; Hector C. Keun; Andrew Craig; Jake T. M. Pearce; Stephen J. Bruce; Nigel Hardy; Susanna-Assunta Sansone; Henrik Antti; Pär Jonsson; Clare A. Daykin; Mahendra Navarange; Richard D. Beger; Elwin Verheij; Alexander Amberg; Dorrit Baunsgaard; Glenn H. Cantor; Lois D. Lehman-McKeeman; Mark Earll; Svante Wold; Erik Johansson; John N. Haselden; Kerstin Kramer; Craig E. Thomas; Johann Lindberg; Ian D. Wilson; Michael D. Reily; Donald G. Robertson; Hans Senn

The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.The Standard Metabolic Reporting Structures (SMRS) working group outlines its vision for an open,community-driven specification for the standardization and reporting of metabolic studies.


The American Journal of Clinical Nutrition | 2010

Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption

Silke S. Heinzmann; Ian J. Brown; Queenie Chan; Magda Bictash; Marc-Emmanuel Dumas; Sunil Kochhar; Jeremiah Stamler; Elaine Holmes; Paul Elliott; Jeremy K. Nicholson

BACKGROUND New food biomarkers are needed to objectively evaluate the effect of diet on health and to check adherence to dietary recommendations and healthy eating patterns. OBJECTIVE We developed a strategy for food biomarker discovery, which combined nutritional intervention with metabolic phenotyping and biomarker validation in a large-scale epidemiologic study. DESIGN We administered a standardized diet to 8 individuals and established a putative urinary biomarker of fruit consumption by using (1)H nuclear magnetic resonance (NMR) spectroscopic profiling. The origin of the biomarker was confirmed by using targeted NMR spectroscopy of various fruit. Excretion kinetics of the biomarker were measured. The biomarker was validated by using urinary NMR spectra from UK participants of the INTERMAP (International Collaborative Study of Macronutrients, Micronutrients, and Blood Pressure) (n = 499) in which citrus consumption was ascertained from four 24-h dietary recalls per person. Finally, dietary patterns of citrus consumers (n = 787) and nonconsumers (n = 1211) were compared. RESULTS We identified proline betaine as a putative biomarker of citrus consumption. High concentrations were observed only in citrus fruit. Most proline betaine was excreted < or =14 h after a first-order excretion profile. Biomarker validation in the epidemiologic data showed a sensitivity of 86.3% for elevated proline betaine excretion in participants who reported citrus consumption and a specificity of 90.6% (P < 0.0001). In comparison with noncitrus consumers, citrus consumers had lower intakes of fats, lower urinary sodium-potassium ratios, and higher intakes of vegetable protein, fiber, and most micronutrients. CONCLUSION The biomarker identification and validation strategy has the potential to identify biomarkers for healthier eating patterns associated with a reduced risk of major chronic diseases. The trials were registered at clinicaltrials.gov as NCT01102049 and NCT01102062.


Journal of Proteome Research | 2009

Panorganismal gut microbiome-host metabolic crosstalk.

François-Pierre Martin; Norbert Sprenger; Ivan K. S. Yap; Yulan Wang; Rodrigo Bibiloni; Florence Rochat; Serge Rezzi; Christine Cherbut; Sunil Kochhar; John C. Lindon; Elaine Holmes; Jeremy K. Nicholson

Coevolution shapes interorganismal crosstalk leading to profound and diverse cellular and metabolic changes as observed in gut dysbiosis in human diseases. Here, we modulated a simplified gut microbiota using pro-, pre-, and synbiotics to assess the depth of systemic metabolic exchanges in mice, using a multicompartmental modeling approach with metabolic signatures from 10 tissue/fluid compartments. The nutritionally induced microbial changes modulated host lipid, carbohydrate, and amino acid metabolism at a panorganismal scale. Galactosyl-oligosaccharides reduced lipogenesis, triacylglycerol incorporation into lipoproteins and triglyceride concentration in the liver and the kidney. Those changes were not correlated with decreased plasma lipoproteins that were specifically induced by L. rhamnosus supplementation. Additional alteration of transmethylation metabolic pathways (homocysteine-betaine) was observed in the liver and the pancreas following pre- and synbiotic microbial modulation, which may be of interest for control of glucose metabolism and insulin sensitivity. Probiotics also reduced hepatic glycogen and glutamine and adrenal ascorbate with inferred effects on energy homeostasis, antioxidation, and steroidogenesis. These studies show the breadth and the depth of gut microbiome modulations of host biochemistry and reveal that major mammalian metabolic processes are under symbiotic homeostatic control.


Talanta | 2006

Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms

Ziad Ramadan; Doris M. Jacobs; M. Grigorov; Sunil Kochhar

The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.


Journal of Biological Chemistry | 2006

A Serpin from the Gut Bacterium Bifidobacterium longum Inhibits Eukaryotic Elastase-like Serine Proteases

Dmitri Ivanov; Celine Emonet; Francis Foata; Michael Affolter; Michelle Delley; Makda Fisseha; Stéphanie Blum-Sperisen; Sunil Kochhar; Fabrizio Arigoni

Serpins form a large class of protease inhibitors involved in regulation of a wide spectrum of physiological processes. Recently identified prokaryotic members of this protein family may provide a key to the evolutionary origins of the unique serpin fold and the associated inhibitory mechanism. We performed a biochemical characterization of a serpin from Bifidobacterium longum, an anaerobic Gram-positive bacterium that naturally colonizes human gastrointestinal tract. The B. longum serpin was shown to efficiently inhibit eukaryotic elastase-like proteases with a stoichiometry of inhibition close to 1. Porcine pancreatic elastase and human neutrophil elastase were inhibited with the second order association constants of 4.7 × 104 m-1 s-1 and 2.1 × 104 m-1 s-1, respectively. The B. longum serpin is expected to be active in the gastrointestinal tract, because incubation of the purified recombinant serpin with mouse feces produces a stable covalent serpin-protease adduct readily detectable by SDS-PAGE. Bifidobacteria may encounter both pancreatic elastase and neutrophil elastase in their natural habitat and protection against exogenous proteolysis may play an important role in the interaction between these commensal bacteria and their host.


British Journal of Nutrition | 2011

A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects

Alastair B. Ross; Stephen J. Bruce; Anny Blondel-Lubrano; Sylviane Oguey-Araymon; Maurice Beaumont; Alexandre Bourgeois; Corine Nielsen-Moennoz; Mario Vigo; Laurent-Bernard Fay; Sunil Kochhar; Rodrigo Bibiloni; Anne-Cécile Pittet; Shahram Emady-Azar; Dominik Grathwohl; Serge Rezzi

Epidemiological studies have repeatedly found that whole-grain (WG) cereal foods reduce the risk of several lifestyle-related diseases, though consistent clinical outcomes and mechanisms are elusive. To compare the effects of a WG-rich diet with a matched refined-grain (RG) diet on plasma biomarkers and bowel health parameters, seventeen healthy subjects (eleven females and six males) completed an exploratory cross-over study with a 2-week intervention diet based on either WG- or RG-based foods, separated by a washout of at least 5 weeks. Both diets were the same except for the use of WG (150 g/d) or RG foods. Subjects undertook a 4 h postprandial challenge on day 8 of each intervention diet. After 2 weeks, the WG diet tended to decrease plasma total and LDL-cholesterol (both P = 0·09), but did not change plasma HDL-cholesterol, fasting glucose, C-reactive protein or homocysteine compared with the RG diet. Plasma betaine and alkylresorcinol concentrations were elevated after 1 week of the WG diet (P = 0·01 and P < 0·0001, respectively). Clostridium leptum populations in faeces were increased after the WG diet, along with a trend for decreased faecal water pH (P = 0·096) and increased stool frequency (P < 0·0001) compared with the RG diet. A short controlled intervention trial with a variety of commercially available WG-based products tended to improve biomarkers of CVD compared with a RG diet. Changes in faecal microbiota related to increased fibre fermentation and increased plasma betaine concentrations point to both fibre and phytochemical components of WG being important in mediating any potential health effects.

Collaboration


Dive into the Sunil Kochhar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alastair B. Ross

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yulan Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge