Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunil R. Lakhani is active.

Publication


Featured researches published by Sunil R. Lakhani.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Nature | 2012

The landscape of cancer genes and mutational processes in breast cancer

Philip Stephens; Patrick Tarpey; Helen Davies; Peter Van Loo; Christopher Greenman; David C. Wedge; Serena Nik-Zainal; Sancha Martin; Ignacio Varela; Graham R. Bignell; Lucy R. Yates; Elli Papaemmanuil; David Beare; Adam Butler; Angela Cheverton; John Gamble; Jonathan Hinton; Mingming Jia; Alagu Jayakumar; David Jones; Calli Latimer; King Wai Lau; Stuart McLaren; David J. McBride; Andrew Menzies; Laura Mudie; Keiran Raine; Roland Rad; Michael Spencer Chapman; Jon W. Teague

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Journal of Clinical Oncology | 2002

The Pathology of Familial Breast Cancer: Predictive Value of Immunohistochemical Markers Estrogen Receptor, Progesterone Receptor, HER-2, and p53 in Patients With Mutations in BRCA1 and BRCA2

Sunil R. Lakhani; Marc J. van de Vijver; Jocelyne Jacquemier; T. J. Anderson; Peter Osin; Lesley McGuffog; Douglas F. Easton

PURPOSE The morphologic and molecular phenotype of breast cancers may help identify patients who are likely to carry germline mutations in BRCA1 and BRCA2. This study evaluates the immunohistochemical profiles of tumors arising in patients with mutations in these genes. MATERIALS AND METHODS Samples of breast cancers obtained from the International Breast Cancer Linkage Consortium were characterized morphologically and immunohistochemically using antibodies to estrogen receptor, progesterone receptor, HER-2 (c-erbB-2 oncogene), and p53 protein. RESULTS Breast cancers in patients with BRCA1 germline mutations are more often negative for estrogen receptor, progesterone receptor, and HER-2, and are more likely to be positive for p53 protein compared with controls. In contrast, BRCA2 tumors do not show a significant difference in the expression of any of these proteins compared with controls. CONCLUSION BRCA1 has a distinctive morphology and immunohistochemical phenotype. The combined morphologic and immunohistochemical data can be used to predict the risk of a young patient harboring a germline mutation in BRCA1. The BRCA2 phenotype is currently not well defined.


Clinical Cancer Research | 2005

Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype.

Sunil R. Lakhani; Jorge S. Reis-Filho; Laura G. Fulford; Frédérique Penault-Llorca; Marc van der Vijver; Suzanne Parry; Timothy Bishop; Javier Benitez; Carmen Rivas; Yves-Jean Bignon; Jenny Chang-Claude; Ute Hamann; Cees J. Cornelisse; Peter Devilee; Matthias W. Beckmann; Carolin Nestle-Krämling; Peter A. Daly; Neva E. Haites; Jenny Varley; Fiona Lalloo; Gareth Evans; Christine Maugard; Hanne Meijers-Heijboer; J.G.M. Klijn; Edith Olah; Barry A. Gusterson; Silvana Pilotti; Paolo Radice; Siegfried Scherneck; Hagay Sobol

Purpose: To investigate the proportion of breast cancers arising in patients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Experimental Design: Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. Results: All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. Conclusion: The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.


Nature Genetics | 2000

Identification of the familial cylindromatosis tumour-suppressor gene

Graham R. Bignell; William Warren; Sheila Seal; Meiko Takahashi; Elizabeth A. Rapley; Rita Barfoot; Helen Green; Carolanne Brown; Patrick J. Biggs; Sunil R. Lakhani; Chris Jones; Juliana E. Hansen; Edward Blair; Benedikt Hofmann; Reiner Siebert; Gwen Turner; D. Gareth Evans; Connie Schrander-Stumpel; Frits A. Beemer; Ans van den Ouweland; Dicky Halley; Bertrand Delpech; Mark G. Cleveland; Irene M. Leigh; Jaakko Leisti; Sonja A. Rasmussen; Margaret R. Wallace; Christiane Fenske; Piu Banerjee; Naoki Oiso

Familial cylindromatosis is an autosomal dominant genetic predisposition to multiple tumours of the skin appendages. The susceptibility gene (CYLD) has previously been localized to chromosome 16q and has the genetic attributes of a tumour-suppressor gene (recessive oncogene). Here we have identified CYLD by detecting germline mutations in 21 cylindromatosis families and somatic mutations in 1 sporadic and 5 familial cylindromas. All mutations predict truncation or absence of the encoded protein. CYLD encodes three cytoskeletal-associated-protein–glycine-conserved (CAP–GLY) domains, which are found in proteins that coordinate the attachment of organelles to microtubules. CYLD also has sequence homology to the catalytic domain of ubiquitin carboxy-terminal hydrolases (UCH).


The Journal of Pathology | 2005

Molecular evolution of breast cancer.

Peter T. Simpson; Jorge S. Reis-Filho; Theodora Gale; Sunil R. Lakhani

Molecular analysis of invasive breast cancer and its precursors has furthered our understanding of breast cancer progression. In the past few years, new multi‐step pathways of breast cancer progression have been delineated through genotypic–phenotypic correlations. Nuclear grade, more than any other pathological feature, is strongly associated with the number and pattern of molecular genetic abnormalities in breast cancer cells. Thus, there are two distinct major pathways to the evolution of low‐ and high‐grade invasive carcinomas: whilst the former consistently show oestrogen receptor (ER) and progesterone receptor (PgR) positivity and 16q loss, the latter are usually ER/PgR‐negative and show Her‐2 overexpression/amplification and complex karyotypes. The boundaries between the evolutionary pathways of well‐differentiated/low‐grade ductal and lobular carcinomas have been blurred, with changes in E‐cadherin expression being one of the few distinguishing features between the two. In addition, lesions long thought to be precursors of breast carcinomas, such as hyperplasia of usual type, are currently considered mere risk indicators, whilst columnar cell lesions are now implicated as non‐obligate precursors of atypical ductal hyperplasia (ADH) and well‐differentiated ductal carcinoma in situ (DCIS). However, only through the combination of comprehensive morphological analysis and cutting‐edge molecular tools can this knowledge be translated into clinical practice and patient management. Copyright


Journal of Clinical Oncology | 2005

Phase I Pharmacokinetic and Pharmacodynamic Study of 17-Allylamino, 17-Demethoxygeldanamycin in Patients With Advanced Malignancies

Udai Banerji; A O'Donnell; Michelle Scurr; Simon Pacey; Sarah Stapleton; Yasmin Asad; Laura Simmons; Alison Maloney; Florence I. Raynaud; Maeli Campbell; Michael I. Walton; Sunil R. Lakhani; Stanley B. Kaye; Paul Workman; Ian Judson

PURPOSE To study the toxicity and pharmacokinetic-pharmacodynamic profile of 17-allylamino, 17- demethoxygeldanamycin (17-AAG) and to recommend a dose for phase II trials. PATIENTS AND METHODS This was a phase I study examining a once-weekly dosing schedule of 17-AAG. Thirty patients with advanced malignancies were treated. RESULTS The highest dose level reached was 450 mg/m(2)/week. The dose-limiting toxicities (DLTs) encountered were grade 3 diarrhea in three patients (one at 320 mg/m(2)/week and two at 450 mg/m(2)/week) and grade 3 to 4 hepatotoxicity (AST/ALT) in one patient at 450 mg/m(2)/week. Two of nine DLTs were at the highest dose level. Two patients with metastatic melanoma had stable disease and were treated for 15 and 41 months, respectively. The dose versus area under the curve-relationship for 17-AAG was linear (r(2) = .71) over the dose range 10 to 450 mg/m(2)/week, with peak plasma concentrations of 8,998 mug/L (standard deviation, 2,881) at the highest dose level. After the demonstration of pharmacodynamic changes in peripheral blood leukocytes, pre- and 24 hours post-treatment, tumor biopsies were performed and demonstrated target inhibition (c-RAF-1 inhibition in four of six patients, CDK4 depletion in eight of nine patients and HSP70 induction in eight of nine patients) at the dose levels 320 and 450 mg/m(2)/week. It was not possible to reproducibly demonstrate these changes in biopsies taken 5 days after treatment. CONCLUSION It has been possible to demonstrate that 17-AAG exhibits a tolerable toxicity profile with therapeutic plasma concentrations and target inhibition for 24 hours after treatment and some indications of clinical activity at the dose level 450 mg/m(2)/week. We recommend this dose for phase II clinical trials.


Nature | 2016

Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung

We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Breast Cancer Research | 2010

Breast cancer prognostic classification in the molecular era: the role of histological grade

Emad A. Rakha; Jorge S. Reis-Filho; Fl Baehner; David J. Dabbs; Thomas Decker; Vincenzo Eusebi; Stephen B. Fox; Shu Ichihara; Jocelyne Jacquemier; Sunil R. Lakhani; José Palacios; Andrea L. Richardson; Stuart J. Schnitt; Fernando Schmitt; Puay Hoon Tan; Gary Tse; Sunil Badve; Ian O. Ellis

Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.


Modern Pathology | 2011

Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists

Sunil Badve; David J. Dabbs; Stuart J. Schnitt; Frederick L. Baehner; Thomas Decker; Vincenzo Eusebi; Stephen B. Fox; Shu Ichihara; Jocelyne Jacquemier; Sunil R. Lakhani; José Palacios; Emad A. Rakha; Andrea L. Richardson; Fernando Schmitt; Puay Hoon Tan; Gary M. Tse; Britta Weigelt; Ian O. Ellis; Jorge S. Reis-Filho

Breast cancer is a heterogeneous disease encompassing a variety of entities with distinct morphological features and clinical behaviors. Although morphology is often associated with the pattern of molecular aberrations in breast cancers, it is also clear that tumors of the same histological type show remarkably different clinical behavior. This is particularly true for ‘basal-like cancer’, which is an entity defined using gene expression analysis. The purpose of this article was to review the current state of knowledge of basal-like breast cancers, to discuss the relationship between basal-like and triple-negative breast cancers, and to clarify practical implications of these diagnoses for pathologists and oncologists.

Collaboration


Dive into the Sunil R. Lakhani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jodi M. Saunus

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne Reid

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Georgia Chenevix-Trench

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kum Kum Khanna

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jorge S. Reis-Filho

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Fares Al-Ejeh

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge