Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunil Thomas is active.

Publication


Featured researches published by Sunil Thomas.


Journal of Experimental Medicine | 2005

Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection

Ganesh A. Kolumam; Sunil Thomas; Lucas J. Thompson; Jonathan Sprent; Kaja Murali-Krishna

T cell expansion and memory formation are generally more effective when elicited by live organisms than by inactivated vaccines. Elucidation of the underlying mechanisms is important for vaccination and therapeutic strategies. We show that the massive expansion of antigen-specific CD8 T cells that occurs in response to viral infection is critically dependent on the direct action of type I interferons (IFN-Is) on CD8 T cells. By examining the response to infection with lymphocytic choriomeningitis virus using IFN-I receptor–deficient (IFN-IR0) and –sufficient CD8 T cells adoptively transferred into normal IFN-IR wild-type hosts, we show that the lack of direct CD8 T cell contact with IFN-I causes >99% reduction in their capacity to expand and generate memory cells. The diminished expansion of IFN-IR0 CD8 T cells was not caused by a defect in proliferation but by poor survival during the antigen-driven proliferation phase. Thus, IFN-IR signaling in CD8 T cells is critical for the generation of effector and memory cells in response to viral infection.


Journal of Immunology | 2006

Innate Inflammatory Signals Induced by Various Pathogens Differentially Dictate the IFN-I Dependence of CD8 T Cells for Clonal Expansion and Memory Formation

Lucas J. Thompson; Ganesh A. Kolumam; Sunil Thomas; Kaja Murali-Krishna

Type-I IFNs (IFN-I) provide direct survival signals to T cells during Ag-driven proliferation. Because IFN-I production differs depending on the pathogen, we assessed CD8 T cell requirement for direct IFN-I signals during responses to vaccinia virus (VV), vesicular stomatitis virus (VSV), lymphocytic choriomeningitis virus (LCMV), and Listeria monocytogenes (LM) immunizations in vivo. IFN-I-receptor-deficient (IFN-IR°) CD8 T cells expanded 3- to 5-fold less and formed a diminished memory pool compared with wild-type (WT) CD8 T cells in response to VV, VSV, or LM. WT CD8 T cells expanded more robustly in response to LCMV-encoded Ags than to Ags encoded by the other three pathogens, and under these conditions the lack of direct IFN-I signals inhibited their expansion by ∼100-fold. To test whether the high antigenic-load provided by LCMV caused greater expansion and greater IFN-I dependency, we primed WT and IFN-IR° OVA-specific OT-1 CD8 T cells with a fixed-number of OVA-peptide-pulsed dendritic cells along with adjuvant effect provided by LCMV, VV, VSV, or LM. Both WT and IFN-IR° OT-1 cells were recruited, proliferated, and differentiated into effectors in all the four cases. However, WT OT-1 cells expanded similarly in all four cases. IFN-IR° OT-1 cells expanded ∼20-fold less than the WT OT-1 CD8 T cells when LCMV was used as adjuvant, whereas their expansion was affected only marginally when VV, VSV, or LM were used as adjuvants. Thus, innate/inflammatory signals induced by different pathogens contribute to CD8 T cell expansion and memory formation via distinct levels of IFN-I dependence.


PLOS Pathogens | 2010

IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity

Mehul S. Suthar; Daphne Y. Ma; Sunil Thomas; Jennifer M. Lund; Nu Zhang; Stephane Daffis; Alexander Y. Rudensky; Michael J. Bevan; Edward A. Clark; Murali Krishna Kaja; Michael S. Diamond; Michael Gale

The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.


The EMBO Journal | 2006

T-cell tolerance or function is determined by combinatorial costimulatory signals

Roza Nurieva; Sunil Thomas; Thang Nguyen; Ying Wang; Murali Krishna Kaja; Xue-Zhong Yu; Chen Dong

Activated in immune responses, T lymphocytes differentiate into effector cells with potent immune function. CD28 is the most prominent costimulatory receptor for T‐cell activation. However, absence of CD28 costimulation did not completely impair effector function of CD4 or CD8 T cells. Moreover, increasing number of costimulatory molecules are recently found on antigen‐presenting cells to regulate T‐cell activation. To understand the molecular mechanisms that determine T‐cell function or tolerance, we have collectively examined the roles of positive and negative costimulatory molecules. Antigen‐specific naïve CD4 and CD8 T cells, only when activated in the absence of both CD28 and ICOS pathways, were completely impaired in effector function. These tolerant T cells not only were anergic with profound defects in TcR signal transduction but also completely lacked expression of effector‐specific transcription factors. T‐cell tolerance induction in this system requires the action by negative costimulatory molecules; T‐cell proliferation and function was partially restored by inhibiting PD‐1, B7‐H3 or B7S1. This work demonstrates that T‐cell function or tolerance is controlled by costimulatory signals.


Mbio | 2015

Genetic Diversity in the Collaborative Cross Model Recapitulates Human West Nile Virus Disease Outcomes

Jessica B. Graham; Sunil Thomas; Jessica L. Swarts; Aimee McMillan; Martin T. Ferris; Mehul S. Suthar; Piper M. Treuting; Renee C. Ireton; Michael Gale; Jennifer M. Lund

ABSTRACT West Nile virus (WNV) is an emerging neuroinvasive flavivirus that now causes significant morbidity and mortality worldwide. The innate and adaptive immune responses to WNV infection have been well studied in C57BL/6J inbred mice, but this model lacks the variations in susceptibility, immunity, and outcome to WNV infection that are observed in humans, thus limiting its usefulness to understand the mechanisms of WNV infection and immunity dynamics. To build a model of WNV infection that captures human infection outcomes, we have used the Collaborative Cross (CC) mouse model. We show that this model, which recapitulates the genetic diversity of the human population, demonstrates diversity in susceptibility and outcomes of WNV infection observed in humans. Using multiple F1 crosses of CC mice, we identified a wide range of susceptibilities to infection, as demonstrated through differences in survival, clinical disease score, viral titer, and innate and adaptive immune responses in both peripheral tissues and the central nervous system. Additionally, we examined the Oas1b alleles in the CC mice and confirmed the previous finding that Oas1b plays a role in susceptibility to WNV; however, even within a given Oas1b allele status, we identified a wide range of strain-specific WNV-associated phenotypes. These results confirmed that the CC model is effective for identifying a repertoire of host genes involved in WNV resistance and susceptibility. The CC effectively models a wide range of WNV clinical, virologic, and immune phenotypes, thus overcoming the limitations of the traditional C57BL/6J model, allowing genetic and mechanistic studies of WNV infection and immunity in differently susceptible populations. IMPORTANCE Mouse models of West Nile virus infection have revealed important details regarding the innate and adaptive immune responses to this emerging viral infection. However, traditional mouse models lack the genetic diversity present in human populations and therefore limit our ability to study various disease outcomes and immunologic mechanisms subsequent to West Nile virus infection. In this study, we used the Collaborative Cross mouse model to more effectively model the wide range of clinical, virologic, and immune phenotypes present upon West Nile virus infection in humans. Mouse models of West Nile virus infection have revealed important details regarding the innate and adaptive immune responses to this emerging viral infection. However, traditional mouse models lack the genetic diversity present in human populations and therefore limit our ability to study various disease outcomes and immunologic mechanisms subsequent to West Nile virus infection. In this study, we used the Collaborative Cross mouse model to more effectively model the wide range of clinical, virologic, and immune phenotypes present upon West Nile virus infection in humans.


Journal of Virology | 2014

Activation of the RIG-I Pathway during Influenza Vaccination Enhances the Germinal Center Reaction, Promotes T Follicular Helper Cell Induction, and Provides a Dose-Sparing Effect and Protective Immunity

Raveendra R. Kulkarni; Mohammed Ata Ur Rasheed; Siddhartha Kumar Bhaumik; Priya Ranjan; Weiping Cao; Carl W. Davis; Krishna Marisetti; Sunil Thomas; Shivaprakash Gangappa; Suryaprakash Sambhara; Kaja Murali-Krishna

ABSTRACT Pattern recognition receptors (PRR) sense certain molecular patterns uniquely expressed by pathogens. Retinoic-acid-inducible gene I (RIG-I) is a cytosolic PRR that senses viral nucleic acids and induces innate immune activation and secretion of type I interferons (IFNs). Here, using influenza vaccine antigens, we investigated the consequences of activating the RIG-I pathway for antigen-specific adaptive immune responses. We found that mice immunized with influenza vaccine antigens coadministered with 5′ppp-double-stranded RNA (dsRNA), a RIG-I ligand, developed robust levels of hemagglutination-inhibiting antibodies, enhanced germinal center reaction, and T follicular helper cell responses. In addition, RIG-I activation enhanced antibody affinity maturation and plasma cell responses in the draining lymph nodes, spleen, and bone marrow and conferred protective immunity against virus challenge. Importantly, activation of the RIG-I pathway was able to reduce the antigen requirement by 10- to 100-fold in inducing optimal influenza-specific cellular and humoral responses, including protective immunity. The effects induced by 5′ppp-dsRNA were significantly dependent on type I IFN and IPS-1 (an adapter protein downstream of the RIG-I pathway) signaling but were independent of the MyD88- and TLR3-mediated pathways. Our results show that activation of the RIG-I-like receptor pathway programs the innate immunity to achieve qualitatively and quantitatively enhanced protective cellular adaptive immune responses even at low antigen doses, and this indicates the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines. IMPORTANCE The recently discovered RNA helicase family of RIG-I-like receptors (RLRs) is a critical component of host defense mechanisms responsible for detecting viruses and triggering innate antiviral cytokines that help control viral replication and dissemination. In this study, we show that the RLR pathway can be effectively exploited to enhance adaptive immunity and protective immune memory against viral infection. Our results show that activation of the RIG-I pathway along with influenza vaccination programs the innate immunity to induce qualitatively and quantitatively superior protective adaptive immunity against pandemic influenza viruses. More importantly, RIG-I activation at the time of vaccination allows induction of robust adaptive responses even at low vaccine antigen doses. These results highlight the potential utility of exploiting the RIG-I pathway to enhance viral-vaccine-specific immunity and have broader implications for designing better vaccines in general.


Journal of Immunology | 2007

Antigen Presentation by Nonhemopoietic Cells Amplifies Clonal Expansion of Effector CD8 T Cells in a Pathogen-Specific Manner

Sunil Thomas; Ganesh A. Kolumam; Kaja Murali-Krishna

Professional APCs of hemopoietic-origin prime pathogen-specific naive CD8 T cells. The primed CD8 T cells can encounter Ag on infected nonhemopoietic cell types. Whether these nonhemopoietic interactions perpetuate effector T cell expansion remains unknown. We addressed this question in vivo, using four viral and bacterial pathogens, by comparing expansion of effector CD8 T cells in bone marrow chimeric mice expressing restricting MHC on all cell types vs mice that specifically lack restricting MHC on nonhemopoietic cell types or radiation-sensitive hemopoietic cell types. Absence of Ag presentation by nonhemopoietic cell types allowed priming of naive CD8 T cells in all four infection models tested, but diminished their sustained expansion by ∼10-fold during lymphocytic choriomeningitis virus and by ≤2-fold during vaccinia virus, vesicular stomatitis virus, or Listeria monocytogenes infections. Absence of Ag presentation by a majority (>99%) of hemopoietic cells surprisingly also allowed initial priming of naive CD8 T cells in all the four infection models, albeit with delayed kinetics, but the sustained expansion of these primed CD8 T cells was markedly evident only during lymphocytic choriomeningitis virus, but not during vaccinia virus, vesicular stomatitis virus, or L. monocytogenes. Thus, infected nonhemopoietic cells can amplify effector CD8 T cell expansion during infection, but the extent to which they can amplify is determined by the pathogen. Further understanding of mechanisms by which pathogens differentially affect the ability of nonhemopoietic cell types to contribute to T cell expansion, how these processes alter during acute vs chronic phase of infections, and how these processes influence the quality and quantity of memory cells will have implications for rational vaccine design.


Infection and Immunity | 2013

Short-Lived Effector CD8 T Cells Induced by Genetically Attenuated Malaria Parasite Vaccination Express CD11c

Laura A. Cooney; Megha Gupta; Sunil Thomas; Sebastian A. Mikolajczak; Kimberly Y. Choi; Claire Gibson; Ihn Kyung Jang; Sam Danziger; John D. Aitchison; Malcolm J. Gardner; Stefan H. I. Kappe; Ruobing Wang

ABSTRACT Vaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodent Plasmodium yoelii model. Protection is dependent on CD8+ T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8+ T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8+ T cell phenotype and demonstrated significant upregulation of CD11c on CD3+ CD8b+ T cells in the liver, spleen, and peripheral blood. CD11c+ CD8+ T cells are predominantly CD11ahi CD44hi CD62L−, indicative of antigen-experienced effector cells. Following in vitro restimulation with malaria-infected hepatocytes, CD11c+ CD8+ T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c− CD8+ T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8+ T cells. Coculture of CD11c+, but not CD11c−, CD8+ T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8+ T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c+ CD8+ T cell response, but CD11c expression was lost as the CD8+ T cells entered the memory phase. Further analyses showed that CD11c+ CD8+ T cells are primarily KLRG1+ CD127− terminal effectors, whereas all KLRG1− CD127+ memory precursor effector cells are CD11c− CD8+ T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes.


PLOS Pathogens | 2016

A Mouse Model of Chronic West Nile Virus Disease

Jessica B. Graham; Jessica L. Swarts; Courtney Wilkins; Sunil Thomas; Richard Green; Aimee Sekine; Kathleen Voss; Renee C. Ireton; Michael Mooney; Gabrielle Choonoo; Darla R. Miller; Piper M. Treuting; Fernando Pardo-Manuel de Villena; Martin T. Ferris; Shannon McWeeney; Michael Gale; Jennifer M. Lund

Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.


G3: Genes, Genomes, Genetics | 2017

Oas1b-dependent immune transcriptional profiles of west nile virus infection in the collaborative cross

Richard Green; Courtney Wilkins; Sunil Thomas; Aimee Sekine; Duncan M. Hendrick; Kathleen Voss; Renee C. Ireton; Michael Mooney; Jennifer T. Go; Gabrielle Choonoo; Sophia Jeng; Fernando Pardo-Manuel de Villena; Martin T. Ferris; Shannon McWeeney; Michael Gale

The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. However, the impact of Oas variation on overall innate immune programming and global gene expression among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B protein. We assessed disease profiles and transcriptional signatures of F1 hybrids derived from these founder strains. F1 hybrids included wild-type Oas1b (F/F), homozygous null Oas1b (N/N), and heterozygous offspring of both parental combinations (F/N and N/F). These mice were challenged with WNV, and brain and spleen samples were harvested for global gene expression analysis. We found that the Oas1b haplotype played a role in WNV susceptibility and disease metrics, but the presence of a functional Oas1b allele in heterozygous offspring did not absolutely predict protection against disease. Our results indicate that Oas1b status as wild-type or truncated, and overall Oas1b gene dosage, link with novel innate immune gene signatures that impact specific biological pathways for the control of flavivirus infection and immunity through both Oas1b-dependent and independent processes.

Collaboration


Dive into the Sunil Thomas's collaboration.

Top Co-Authors

Avatar

Michael Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Voss

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Aimee Sekine

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Martin T. Ferris

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Richard Green

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pardo-Manuel de Villena

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge