Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suning Chen is active.

Publication


Featured researches published by Suning Chen.


Breast Cancer Research and Treatment | 2014

Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells

Yifang Wei; Xiaofeng Lai; Shentong Yu; Suning Chen; Yongzheng Ma; Yuan Zhang; Huichen Li; Xingmei Zhu; Libo Yao; Jian Zhang

Recent studies have demonstrated that specific miRNAs, such as miR-221/222, may be responsible for tamoxifen resistance in breast cancer. Secreted miRNAs enclosed in exosomes can act as intercellular bio-messengers. Our objective is to investigate the role of secreted miR-221/222 in tamoxifen resistance of ER-positive breast cancer cells. Transmission electron microscopy analysis and nanoparticle tracking analysis were performed to determine the exosomes difference between MCF-7TamR (tamoxifen resistant) and MCF-7wt (tamoxifen sensitive) cells. PKH67 fluorescent labeling assay was used to detect exosomes derived from MCF-7TamR cells entering into MCF-7wt cells. The potential function of exosomes on tamoxifen resistance transmission was analyzed with cell viability, apoptosis ,and colony formation. MiRNA microarrays and qPCR were used to detect and compare the miRNAs expression levels in the two cells and exosomes. As the targets of miR-221/222, p27 and ERα were analyzed with western blot and qPCR. Compared with the MCF-7wt exosomes, there were significant differences in the concentration and size distribution of MCF-7TamR exosomes. MCF-7wt cells had an increased amount of exosomal RNA and proteins compared with MCF-7TamR cells. MCF-7TamR exosomes could enter into MCF-7wt cells, and then released miR-221/222. And the elevated miR-221/222 effectively reduced the target genes expression of P27 and ERα, which enhanced tamoxifen resistance in recipient cells. Our results are the first to show that secreted miR-221/222 serves as signaling molecules to mediate communication of tamoxifen resistance.


BMC Cancer | 2008

Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

Huadong Zhao; Jian Zhang; Jianguo Lu; Xianli He; Changsheng Chen; Xiaojun Li; Li Gong; Guoqiang Bao; Qiang Fu; Suning Chen; Wei Lin; Hai Shi; Jianjun Ma; Xinping Liu; Qingjiu Ma; Libo Yao

BackgroundNDRG2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid.MethodsIn this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc.ResultsThe immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases.ConclusionOur data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.


Gene | 2008

Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region

Jian Zhang; Suning Chen; Wei Zhang; Jing Zhang; Xinping Liu; Hai Shi; Honglei Che; Weizhong Wang; Fuyang Li; Libo Yao

N-Myc downstream-regulated gene 1 (ndrg1) is up-regulated in N-Myc knockout mouse embryos. The human NDRG family consists of 4 highly homologous members and human Ndrg1 exhibits approximately 94% homology with mouse ndrg1. However, the regulatory mechanism of NDRG1 via Myc repression is as yet unknown. We previously identified human NDRG2 and demonstrated that this gene is transcriptionally down-regulated by Myc via Miz-1-dependent interaction with the core promoter region of NDRG2. Here, we provide evidence that human NDRG1 is regulated by Myc in a manner similar to NDRG2. We found that Ndrg1 expression levels were enhanced as Myc expression declined in differentiated cells, but were down-regulated following Myc induction. The data revealed that both N-Myc and c-Myc can repress human NDRG1 at the transcriptional level. We further determined that the core promoter region of human NDRG1 is required for Myc repression, and verified the interaction of Myc with the core promoter region. However, the presence of the protein synthesis inhibitor cycloheximide could reverse the repression of Myc, indicating the indirect repression of human NDRG1 by Myc. Moreover, we found that c-Myc-mediated repression can be inhibited by TSA, an HDACs inhibitor, which suggests the involvement of HDACs in the repression process. Taken together, our results demonstrate that, in common with NDRG2, human NDRG1 can be indirectly transcriptionally down-regulated by Myc via interaction with the NDRG1 core promoter.


BMC Cancer | 2014

Metformin enhances tamoxifen-mediated tumor growth inhibition in ER-positive breast carcinoma

Ji Ma; Yan Guo; Suning Chen; Cuiping Zhong; Yan Xue; Yuan Zhang; Xiaofeng Lai; Yifang Wei; Shentong Yu; Jian Zhang; Wenchao Liu

BackgroundTamoxifen, an endocrine therapy drug used to treat breast cancer, is designed to interrupt estrogen signaling by blocking the estrogen receptor (ER). However, many ER-positive patients are low reactive or resistant to tamoxifen. Metformin is a widely used anti-diabetic drug with noteworthy anti-cancer effects. We investigated whether metformin has the additive effects with tamoxifen in ER-positive breast cancer therapy.MethodsThe efficacy of metformin alone and in combination with tamoxifen against ER-positive breast cancer was analyzed by cell survival, DNA replication activity, plate colony formation, soft-agar, flow cytometry, immunohistochemistry, and nude mice model assays. The involved signaling pathways were detected by western blot assay.ResultsWhen metformin was combined with tamoxifen, the concentration of tamoxifen required for growth inhibition was substantially reduced. Moreover, metformin enhanced tamoxifen-mediated inhibition of proliferation, DNA replication activity, colony formation, soft-agar colony formation, and induction of apoptosis in ER-positive breast cancer cells. In addition, these tamoxifen-induced effects that were enhanced by metformin may be involved in the bax/bcl-2 apoptotic pathway and the AMPK/mTOR/p70S6 growth pathway. Finally, two-drug combination therapy significantly inhibited tumor growth in vivo.ConclusionThe present work shows that metformin and tamoxifen additively inhibited the growth and augmented the apoptosis of ER-positive breast cancer cells. It provides leads for future research on this drug combination for the treatment of ER-positive breast cancer.


Current Drug Metabolism | 2013

Pharmacogenetic Variation and Metformin Response

Suning Chen; Jie Zhou; Miaomiao Xi; Yanyan Jia; Yan Wong; Jinyi Zhao; Likun Ding; Jian Zhang

Diabetes is a major health problem worldwide, and metformin, a traditional oral anti-hyperglycemic drug, is now believed to be the most widely prescribed antidiabetic drug. Metformin acts primarily by inhibiting hepatic glucose production and improving insulin sensitivity. Metformin is absorbed predominately by the small intestine and excreted in an unaltered form in the urine. The pharmacokinetics of metformin is primarily determined by membrane transporters, including the plasma membrane monoamine transporter (PMAT), the organic cation transporters (OCTs), the multidrug and toxin extrusion (MATE) transporters, and the critical protein kinase AMPactivated protein kinase (AMPK). PMAT may play a role in the uptake of metformin from the gastrointestinal tract, while OCTs mediate the intestinal absorption, hepatic uptake, and renal excretion of metformin. MATEs are believed to contribute to the hepatic and renal excretion of the drug. The pharmacologic effects of metformin are primarily exerted in the liver, at least partly via the activation of AMPK and the subsequent inhibition of gluconeogenesis. A considerable amount of pharmacogenetic research has demonstrated that genetic variation is one of the major factors affecting metformin response. Moreover, it has become increasingly clear that membrane transporters are important determinants of the pharmacokinetics of metformin. In this review, we will discuss the genetic variants of major transporters that purportedly determine the pharmacokinetics of metformin in terms of drug bioavailability, distribution, and excretion, such as PMAT, OCTs, and MATEs. Understanding how genetic variation affects metformin response will help promote more effective use of the drug for the treatment of type 2 diabetes (T2D).


Scientific Reports | 2015

MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition

Yuan Zhang; Yu Wang; Yifang Wei; Mengyang Li; Shentong Yu; Mingxiang Ye; Hongmei Zhang; Suning Chen; Wenchao Liu; Jian Zhang

Docetaxel is commonly used as an effective chemotherapeutic agent in breast cancer treatment, but the underlying mechanisms of drug resistance are not fully understood. The purpose of this study was to investigate the possible role of miR-129-3p in breast cancer cell resistance to docetaxel. MiR-129 and miR-129-3p inhibitor were transfected into breast cancer cells to investigate their effects on chemoresistance to docetaxel. The function of miR-129-3p was evaluated by apoptosis, cell proliferation, and cell cycle assays. We found that miR-129-3p was up-regulated in MDA-MB-231/Doc cells, concurrent with CP110 down-regulation, compared to the parental MDA-MB-231 cells. In vitro drug sensitivity assays demonstrated that miR-129-3p inhibition sensitized MDA-MB-231/Doc and MCF-7 cells to docetaxel, whereas miR-129 overexpression enhanced MDA-MB-231 and MCF-7 cell resistance to docetaxel. Ectopic miR-129 expression reduced CP110 expression and the luciferase activity of a CP110 3′ untranslated region-based reporter construct in MDA-MB-231 cells, suggesting that CP110 is a direct miR-129-3p target. We demonstrated that restoration of CP110 expression in MDA-MB-231 and MCF-7 cells by miR-129 overexpression rendered the cells sensitive to docetaxel. In a nude xenograft model, miR-129 up-regulation significantly decreased MDA-MB-231 cells’ response to docetaxel. Our findings suggest that miR-129-3p down-regulation potentially sensitizes breast cancer cells to docetaxel treatment.


Mini-reviews in Medicinal Chemistry | 2014

Combined Cancer Therapy with Non-Conventional Drugs: All Roads Lead to AMPK

Suning Chen; Xingmei Zhu; Xiaofeng Lai; Tian Xiao; Jian Zhang

AMP-activated protein kinase (AMPK) is a key energy sensor that regulates cellular energy homeostasis. AMPK activation is associated with decreased phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase and causes a general reduction in mRNA translation and protein synthesis. Therefore, AMPK is a novel target for anticancer therapy. Metformin and aspirin are two traditional drugs that are widely used as anti-diabetes and non-steroidal anti-inflammatory drugs (NSAIDs), respectively. Much evidence has confirmed that these two drugs demonstrated encouraging anti-cancer properties. Most importantly, both inhibited tumor proliferation and were mainly dependent on the AMPK/mTOR signaling pathway. In addition, several other drugs, such as resveratrol, berberine, statins, epigallocatechin gallate (EGCG) and capsaicin, have provided a similar capacity for tumor inhibition, and the anti-cancer effects of most of them were mainly the result of AMPK activation. In the current review, we summarize the literature on combination therapy based on these non-classical drugs and their potential mechanisms for activating AMPK. Combinations of these drugs will provide a novel cancer therapeutic regimen.


Cancer Biology & Therapy | 2016

Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS

Ruohan Zhang; Hongyu Qiao; Suning Chen; Xu Chen; Kefeng Dou; Li Wei; Jian Zhang

ABSTRACT Lapatinib, a novel tyrosine kinase inhibitor of HER2/EGFR, is used to treat HER2-positive breast cancer. However, acquired drug resistance has limited the clinical therapeutic efficacy of lapatinib. Our previous study found that inhibition of autophagy can reduce the proliferation, DNA synthesis, and colony-forming capacity of lapatinib-resistant cells. Berberine has attracted extensive attention due to its wide range of biochemical and pharmacological effects in breast cancer treatment. It has been reported that berberine can induce oxidative stress and the mitochondrial-related apoptotic pathway in human breast cancer cells. In our current study, we found that a new combination therapy of berberine with lapatinib overcame lapatinib resistance. Furthermore, we found that berberine induced apoptosis of lapatinib-resistant cells through upregulating the level of ROS. Specially, lapatinib activated both the c-Myc/pro-Nrf2 pathway and GSK-3β signaling to stabilize Nrf2 and maintain a low level of ROS in resistant cells. However, berberine can upset the ROS balance by downregulating c-Myc to reverse the lapatinib resistance. Our finding provides a novel strategy of using berberine to overcome lapatinib resistance.


Journal of Applied Toxicology | 2015

The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells

Xiaofeng Lai; Yifang Wei; Hu Zhao; Suning Chen; Xin Bu; Fan Lu; Dingding Qu; Libo Yao; Jianyong Zheng; Jian Zhang

Metallic nanoparticles (NPs) have potential applications in industry and medicine, but they also have the potential to cause many chronic pulmonary diseases. Mechanisms for their cytotoxicity, glucose and energy metabolism responses need to be fully explained in lung epithelial cells after treatment with metallic nanoparticles. In our study, two different metallic nanoparticles (Fe2O3 and ZnO) and two cell‐based assays (BEAS‐2B and A549 cell lines) were used. Our findings demonstrate that ZnO nanoparticles, but not Fe2O3 nanoparticles, induce cell cycle arrest, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial dysfunction and glucose metabolism perturbation, which are responsible for cytotoxicity. These results also suggest that the glucose metabolism and bioenergetics had a great potential in evaluating the cytotoxicity and thus were very helpful in understanding their underlying molecular mechanisms. Copyright


Tumor Biology | 2016

Protective autophagy promotes the resistance of HER2-positive breast cancer cells to lapatinib

Suning Chen; Xingmei Zhu; Hongyu Qiao; Mingxiang Ye; Xiaofeng Lai; Shentong Yu; Likun Ding; Jian Zhang

Lapatinib, a tyrosine kinase inhibitor of HER2/EGFR, can inhibit the proliferation of HER2-positive breast cancer cells. Additionally, the combination of lapatinib and chemotherapy can markedly prolong patient survival time. However, the clinical therapeutic effect of lapatinib is severely limited by drug resistance. We previously found that brief treatment with lapatinib induced both apoptosis and autophagy in HER2-positive breast cancer cells. Additionally, the apoptosis induced by lapatinib was dependent on autophagy. In our current study, however, we used extended treatment of HER2-positive breast cancer cells with lapatinib to confirm the presence of protective autophagy in the previously established lapatinib-resistant cells. Specifically, we found that inhibition of autophagy could reduce the proliferation, DNA synthesis, and colony-forming capacity of resistant cells. Thus, autophagy is a potential novel therapeutic target for reversing lapatinib resistance of HER2-positive breast cancer cells. Our data provide clear, novel evidence of both anti-apoptotic and pro-apoptotic functions of autophagy in breast cancer during lapatinib treatment.

Collaboration


Dive into the Suning Chen's collaboration.

Top Co-Authors

Avatar

Jian Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Lai

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Libo Yao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shentong Yu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yifang Wei

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Likun Ding

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xingmei Zhu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Hai Shi

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongyu Qiao

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge