Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sunju Park is active.

Publication


Featured researches published by Sunju Park.


Cancer Research | 2013

HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression

Nilay Shah; Kideok Jin; Leigh Ann Cruz; Sunju Park; Helen Sadik; Soonweng Cho; Chirayu Goswami; Harikrishna Nakshatri; Rajnish A. Gupta; Howard Y. Chang; Zhe Zhang; Ashley Cimino-Mathews; Leslie Cope; Christopher B. Umbricht; Saraswati Sukumar

Most breast cancers expressing the estrogen receptor α (ERα) are treated successfully with the receptor antagonist tamoxifen (TAM), but many of these tumors recur. Elevated expression of the homeodomain transcription factor HOXB13 correlates with TAM-resistance in ERα-positive (ER+) breast cancer, but little is known regarding the underlying mechanism. Our comprehensive evaluation of HOX gene expression using tiling microarrays, with validation, showed that distant metastases from TAM-resistant patients also displayed high HOXB13 expression, suggesting a role for HOXB13 in tumor dissemination and survival. Here we show that HOXB13 confers TAM resistance by directly downregulating ERα transcription and protein expression. HOXB13 elevation promoted cell proliferation in vitro and growth of tumor xenografts in vivo. Mechanistic investigations showed that HOXB13 transcriptionally upregulated interleukin (IL)-6, activating the mTOR pathway via STAT3 phosphorylation to promote cell proliferation and fibroblast recruitment. Accordingly, mTOR inhibition suppressed fibroblast recruitment and proliferation of HOXB13-expressing ER+ breast cancer cells and tumor xenografts, alone or in combination with TAM. Taken together, our results establish a function for HOXB13 in TAM resistance through direct suppression of ERα and they identify the IL-6 pathways as mediator of disease progression and recurrence.


Journal of Biological Chemistry | 2009

Mirk Regulates the Exit of Colon Cancer Cells from Quiescence

Kideok Jin; Daina Z. Ewton; Sunju Park; Jing Hu; Eileen Friedman

Mirk/Dyrk1B is a serine/threonine kinase widely expressed in colon cancers. Serum starvation induced HD6 colon carcinoma cells to enter a quiescent G0 state, characterized by a 2N DNA content and a lower RNA content than G1 cells. Compared with cycling cells, quiescent cells exhibited 16-fold higher levels of the retinoblastoma protein p130/Rb2, which sequesters E2F4 to block entry into G1, 10-fold elevated levels of the CDK inhibitor p27kip1, and 10-fold higher levels of Mirk. However, depletion of Mirk did not prevent entry into G0, but enabled quiescent HD6, SW480, and colo320 colon carcinoma cells to acquire some biochemical characteristics of G1 cells, including increased levels of cyclin D1 and cyclin D3 because of slower turnover, increased activity of their CDK4/cyclin D complexes, and increased phosphorylation and decreased E2F4 sequestering ability of the CDK4 target, p130/Rb2. As a result, depletion of Mirk allowed some cells to escape quiescence and enabled cells released from quiescence to traverse G1 more quickly. The kinase activity of Mirk was increased by the chemotherapeutic drug 5-fluorouracil (5-FU). Treatment of p53 mutant colon cancer cells with 5-FU led to an elongated G1 in a Mirk-dependent manner, as G1 was shortened by ectopic overexpression of cyclin D1 mutated at the Mirk phosphorylation site (T288A), but not by wild-type cyclin D1. Mirk, through regulating cyclin D turnover, and the CDK inhibitor p27, as shown by depletion studies, functioned independently and additively to regulate the exit of tumor cells from quiescence.


Cancer Research | 2007

The Survival Kinase Mirk/Dyrk1B Is a Downstream Effector of Oncogenic K-ras in Pancreatic Cancer

Kideok Jin; Sunju Park; Daina Z. Ewton; Eileen Friedman

The kinase Mirk is overexpressed in many resected pancreatic adenocarcinomas and is amplified in a subset of pancreatic cancer cell lines. Depletion of Mirk has been shown to lead to apoptosis in pancreatic cancer cell lines, and thus to inhibit their clonogenic growth. Mirk is activated by signaling from activated Rac1 to MKK3 in MDCK cells, but the mechanism of activation of Mirk in pancreatic cancers is unknown. In this report, Mirk is shown to be a novel effector of K-ras, a gene mutated in approximately 90% of pancreatic cancers. Activation of Mirk signaling from oncogenic K-ras through Rac1 was shown in transient expression systems and reporter assays. Mirk activation in pancreatic cancer cells was blocked by RNA interference using three different synthetic duplex RNAis to K-ras, or two RNAis to Rac1, by pharmacologic inhibition of Rac1, or by expression of dominant negative K-rasS17N. Rac1 was activated in four out of five pancreatic cancer cell lines, and was activated by signaling from oncogenic K-ras. Mirk knockout does not induce embryonic lethality, and depletion of Mirk had no effect on the survival of normal diploid fibroblasts. In contrast, the clonogenic ability of Panc1 and AsPc1 pancreatic cancer cell lines was reduced 8- to 12-fold by the depletion of Mirk, with a greater reduction seen following the depletion of K-ras or both genes. Mirk is a novel downstream effector of oncogenic K-ras and mediates some of the survival signals activated by ras signaling.


Cancer Research | 2016

Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer.

Anders Josefsson; Jessie R. Nedrow; Sunju Park; Sangeeta Ray Banerjee; Andrew Rittenbach; Fabien Jammes; Benjamin Tsui; George Sgouros

The programmed cell death ligand 1 (PD-L1) participates in an immune checkpoint system involved in preventing autoimmunity. PD-L1 is expressed on tumor cells, tumor-associated macrophages, and other cells in the tumor microenvironment. Anti-PD-L1 antibodies are active against a variety of cancers, and combined anti-PD-L1 therapy with external beam radiotherapy has been shown to increase therapeutic efficacy. PD-L1 expression status is an important indicator of prognosis and therapy responsiveness, but methods to precisely capture the dynamics of PD-L1 expression in the tumor microenvironment are still limited. In this study, we developed a murine anti-PD-L1 antibody conjugated to the radionuclide Indium-111 ((111)In) for imaging and biodistribution studies in an immune-intact mouse model of breast cancer. The distribution of (111)In-DTPA-anti-PD-L1 in tumors as well as the spleen, liver, thymus, heart, and lungs peaked 72 hours after injection. Coinjection of labeled and 100-fold unlabeled antibody significantly reduced spleen uptake at 24 hours, indicating that an excess of unlabeled antibody effectively blocked PD-L1 sites in the spleen, thus shifting the concentration of (111)In-DTPA-anti-PD-L1 into the blood stream and potentially increasing tumor uptake. Clearance of (111)In-DTPA-anti-PD-L1 from all organs occurred at 144 hours. Moreover, dosimetry calculations revealed that radionuclide-labeled anti-PD-L1 antibody yielded tolerable projected marrow doses, further supporting its use for radiopharmaceutical therapy. Taken together, these studies demonstrate the feasibility of using anti-PD-L1 antibody for radionuclide imaging and radioimmunotherapy and highlight a new opportunity to optimize and monitor the efficacy of immune checkpoint inhibition therapy.


Cancer Discovery | 2015

HOXB7 Is an ERα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading to Endocrine Resistance

Kideok Jin; Sunju Park; Wei Wen Teo; Preethi Korangath; Sean Soonweng Cho; Takahiro Yoshida; Balázs Győrffy; Chirayu Goswami; Harikrishna Nakshatri; Leigh Ann Cruz; Weiqiang Zhou; Hongkai Ji; Ying Su; Muhammad B. Ekram; Zhengsheng Wu; Tao Zhu; Kornelia Polyak; Saraswati Sukumar

UNLABELLED Why breast cancers become resistant to tamoxifen despite continued expression of the estrogen receptor-α (ERα) and what factors are responsible for high HER2 expression in these tumors remains an enigma. HOXB7 chromatin immunoprecipitation analysis followed by validation showed that HOXB7 physically interacts with ERα, and that the HOXB7-ERα complex enhances transcription of many ERα target genes, including HER2. Investigating strategies for controlling HOXB7, our studies revealed that MYC, stabilized via phosphorylation mediated by EGFR-HER2 signaling, inhibits transcription of miR-196a, a HOXB7 repressor. This leads to increased expression of HOXB7, ER target genes, and HER2. Repressing MYC using small-molecule inhibitors reverses these events and causes regression of breast cancer xenografts. The MYC-HOXB7-HER2 signaling pathway is eminently targetable in endocrine-resistant breast cancer. SIGNIFICANCE HOXB7 acts as an ERα cofactor regulating a myriad of ER target genes, including HER2, in tamoxifen-resistant breast cancer. HOXB7 expression is controlled by MYC via transcriptional regulation of the HOXB7 repressor miR-196a; consequently, antagonists of MYC cause reversal of selective ER modulator resistance both in vitro and in vivo.


Cancer Research | 2016

HOXC10 expression supports the development of chemotherapy resistance by fine tuning DNA repair in breast cancer cells

Helen Sadik; Preethi Korangath; Nguyen Nguyen; Balazs Gyorffy; Rakesh Kumar; Mohammad Hedayati; Wei Wen Teo; Sunju Park; Hardik Panday; Teresa Gonzalez Munoz; Otília Menyhárt; Nilay Shah; Raj K. Pandita; Jenny C. Chang; Theodore L. DeWeese; Howard Y. Chang; Tej K. Pandita; Saraswati Sukumar

Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR.


Molecular Oncology | 2017

Inhibitors of STAT3, β‐catenin, and IGF‐1R sensitize mouse PIK3CA‐mutant breast cancer to PI3K inhibitors

Vanessa F. Merino; Soonweng Cho; Xiaohui Liang; Sunju Park; Kideok Jin; Qian Chen; Duojia Pan; Cynthia A. Zahnow; Alan Rein; Saraswati Sukumar

Although mutations in the phosphoinositide 3‐kinase catalytic subunit (PIK3CA) are common in breast cancer, PI3K inhibitors alone have shown modest efficacy. We sought to identify additional pathways altered in PIK3CA‐mutant tumors that might be targeted in combination with PI3K inhibitors. We generated two transgenic mouse models expressing the human PIK3CA‐H1047R‐ and the ‐E545K hotspot‐mutant genes in the mammary gland and evaluated their effects on development and tumor formation. Molecular analysis identified pathways altered in these mutant tumors, which were also targeted in multiple cell lines derived from the PIK3CA tumors. Finally, public databases were analyzed to determine whether novel pathways identified in the mouse tumors were altered in human tumors harboring mutant PIK3CA. Mutant mice showed increased branching and delayed involution of the mammary gland compared to parental FVB/N mice. Mammary tumors arose in 30% of the MMTV‐PIK3CA‐H1047R and in 13% of ‐E545K mice. Compared to MMTV‐Her‐2 transgenic mouse mammary tumors, H1047R tumors showed increased upregulation of Wnt/β‐catenin/Axin2, hepatocyte growth factor (Hgf)/Stat3, insulin‐like growth factor 2 (Igf‐2), and Igf‐1R pathways. Inhibitors of STAT3, β‐catenin, and IGF‐1R sensitized H1047R‐derived mouse tumor cells and PIK3CA‐H1047R overexpressing human HS578T breast cancer cells to the cytotoxic effects of PI3K inhibitors. Analysis of The Cancer Genome Atlas database showed that, unlike primary PIK3CA‐wild‐type and HER‐2+ breast carcinomas, PIK3CA‐mutant tumors display increased expression of AXIN2, HGF, STAT3, IGF‐1, and IGF‐2 mRNA and activation of AKT, IGF1‐MTOR, and WNT canonical signaling pathways. Drugs targeting additional pathways that are altered in PIK3CA‐mutant tumors may improve treatment regimens using PI3K inhibitors alone.


Oncotarget | 2016

Effective treatment of ductal carcinoma in situ with a HER-2- targeted alpha-particle emitting radionuclide in a preclinical model of human breast cancer.

Takahiro Yoshida; Kideok Jin; Hong Song; Sunju Park; David L. Huso; Zhe Zhang; Han Liangfeng; Charles Zhu; Frank Bruchertseifer; Alfred Morgenstern; George Sgouros; Saraswati Sukumar

The standard treatment for ductal carcinoma in situ (DCIS) of the breast is surgical resection, followed by radiation. Here, we tested localized therapy of DCIS in mice using the immunoconjugate 225Ac linked-trastuzumab delivered through the intraductal (i.duc) route. Trastuzumab targets HER-2/neu, while the alpha-emitter 225Ac (half-life, 10 days) delivers highly cytotoxic, focused doses of radiation to tumors. Systemic 225Ac, however, elicits hematologic toxicity and at high doses free 213Bi, generated by its decay, causes renal toxicity. I.duc delivery of the radioimmunoconjugate could bypass its systemic toxicity. Bioluminescent imaging showed that the therapeutic efficacy of intraductal 225Ac-trastuzumab (10-40 nCi per mammary gland; 30-120 nCi per mouse) in a DCIS model of human SUM225 cancer cells in NSG mice was significantly higher (p<0.0003) than intravenous (120 nCi per mouse) administration, with no kidney toxicity or loss of body weight. Our findings suggest that i.duc radioimmunotherapy using 225Ac-trastuzumab deserves greater attention for future clinical development as a treatment modality for early breast cancer.


The Journal of Nuclear Medicine | 2017

Imaging of Programmed Cell Death Ligand 1: Impact of Protein Concentration on Distribution of Anti-PD-L1 SPECT Agents in an Immunocompetent Murine Model of Melanoma

Jessie Nedrow; Anders Josefsson; Sunju Park; Sagar Ranka; Sanchita Roy; George Sgouros

Programmed cell death ligand 1 (PD-L1) is part of an immune checkpoint system that is essential for preventing autoimmunity and cancer. Recent approaches in immunotherapy that target immune checkpoints have shown great promise in a variety of cancers, including metastatic melanoma. The use of targeted molecular imaging would help identify patients who will best respond to anti-PD-L1 treatment while potentially providing key information to limit immune-related adverse effects. Recently, we developed an antibody-based PD-L1–targeted SPECT agent—111In-diethylenetriaminepentaacetic acid (DTPA)-anti-PD-L1—to identify PD-L1–positive tumors in vivo. To best use such PD-L1–targeted imaging agents, it is important, as a first step, to understand how the signal is affected by different parameters. Methods: We evaluated the impact of protein concentration on the distribution of 111In-DTPA-anti-PD-L1 in a murine model of aggressive melanoma. Results: 111In-DTPA-anti-PD-L1 (dissociation constant, 0.6 ± 0.1 nM) demonstrated increased uptake in B16F10 tumors at protein concentrations equaling or exceeding 1 mg/kg at 24 h and 3 mg/kg at 72 h. At 24 h, the PD-L1–rich spleen and lungs demonstrated decreasing uptake with increasing protein concentration. At 72 h, uptake in the thymus was significantly increased at protein concentrations of 3 mg/kg or greater. Both time points demonstrated increased tracer amounts remaining in circulation as the amount of cold antibody was increased. Conclusion: These studies demonstrate that 111In-DTPA-anti-PD-L1 is capable of identifying tumors that overexpresses PD-L1 and monitoring the impact of PD-L1–rich organs on the distribution of anti-PD-L1 antibodies.


Oncotarget | 2017

Human HER2 overexpressing mouse breast cancer cell lines derived from MMTV.f.HuHER2 mice: characterization and use in a model of metastatic breast cancer

Sunju Park; Jessie R. Nedrow; Anders Josefsson; George Sgouros

Preclinical evaluation of therapeutic agents against metastatic breast cancer require cell lines and animal models that recapitulate clinical metastatic breast cancer as much as possible. We have previously used cell lines derived from the neu-N transgenic model to investigate anti-neu targeting of metastatic breast cancer using an alpha-emitter labeled antibody reactive with the rat variant of HER2/neu expressed by the neu-N model. To investigate alpha-particle emitter targeting of metastatic breast cancer using clinically relevant, commercially available anti-HER2/neu antibodies, we have developed cell lines derived from primary tumors and lung metastases from HuHER2 transgenic mice. We extracted primary mammary gland tumors, isolated the epithelial breast cancer cells, and established seven different cell lines. We also established 2 different cell lines from spontaneous lung metastases and cell lines from a serial transplantation of tumor tissues in HuHER2 transgenic mice. HuHER2 protein was overexpressed in all of the established cell lines. The mRNA level of ER (estrogen receptor) and PR (progesterone receptor) was relatively low in the cell lines compared to normal mammary gland (MG). As EMT markers, the expression of E-Cadherin in the cell lines was downregulated while the expression of TWIST1 and Vimentin were upregulated, relative to MG. Furthermore, trastuzumab directly inhibited cellular viability. Biodistribution studies with 111In-DTPA-trastuzumab in HuHER2 cell tumor xenografts demonstrated specific targeting with a clinically relevant antibody. Collectively, these cell lines show all the hallmarks of highly aggressive, metastatic breast cancer and are being used to evaluate combination therapy with alpha-particle emitter labeled HER2/neu reactive antibodies.Preclinical evaluation of therapeutic agents against metastatic breast cancer require cell lines and animal models that recapitulate clinical metastatic breast cancer as much as possible. We have previously used cell lines derived from the neu-N transgenic model to investigate anti-neu targeting of metastatic breast cancer using an alpha-emitter labeled antibody reactive with the rat variant of HER2/neu expressed by the neu-N model. To investigate alpha-particle emitter targeting of metastatic breast cancer using clinically relevant, commercially available anti-HER2/neu antibodies, we have developed cell lines derived from primary tumors and lung metastases from HuHER2 transgenic mice. We extracted primary mammary gland tumors, isolated the epithelial breast cancer cells, and established seven different cell lines. We also established 2 different cell lines from spontaneous lung metastases and cell lines from a serial transplantation of tumor tissues in HuHER2 transgenic mice. HuHER2 protein was overexpressed in all of the established cell lines. The mRNA level of ER (estrogen receptor) and PR (progesterone receptor) was relatively low in the cell lines compared to normal mammary gland (MG). As EMT markers, the expression of E-Cadherin in the cell lines was downregulated while the expression of TWIST1 and Vimentin were upregulated, relative to MG. Furthermore, trastuzumab directly inhibited cellular viability. Biodistribution studies with 111In-DTPA-trastuzumab in HuHER2 cell tumor xenografts demonstrated specific targeting with a clinically relevant antibody. Collectively, these cell lines show all the hallmarks of highly aggressive, metastatic breast cancer and are being used to evaluate combination therapy with alpha-particle emitter labeled HER2/neu reactive antibodies.

Collaboration


Dive into the Sunju Park's collaboration.

Top Co-Authors

Avatar

George Sgouros

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anders Josefsson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kideok Jin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Saraswati Sukumar

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessie R. Nedrow

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sagar Ranka

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Alfred Morgenstern

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar

Frank Bruchertseifer

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge