Sunny Y. Wong
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunny Y. Wong.
Nature Medicine | 2009
Sunny Y. Wong; Allen Seol; Po Lin So; Alexandre N. Ermilov; Christopher K. Bichakjian; Ervin H. Epstein; Andrzej A. Dlugosz; Jeremy F. Reiter
Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway–dependent mouse tumor models. Ciliary ablation strongly inhibited BCC-like tumors induced by an activated form of Smoothened. In contrast, removal of cilia accelerated tumors induced by activated Gli2, a transcriptional effector of Hh signaling. These seemingly paradoxical effects are consistent with a dual role for cilia in mediating both the activation and the repression of the Hh signaling pathway. Our findings demonstrate that cilia function as unique signaling organelles that can either mediate or suppress tumorigenesis depending on the nature of the oncogenic initiating event.
Cell Cycle | 2006
Sunny Y. Wong; Richard O. Hynes
The formation of distant metastases is the deadliest phase of cancer progression. Although numerous studies have identified genes and mechanisms that affect metastasis after tumors have reached secondary sites, our knowledge about how cancer cells initially gain access to systemic circulation is limited. Since tumors can enter the blood directly by intravasating into venous capillaries or indirectly via lymphatics, it is important to evaluate the relative contributions of both pathways as routes of egress from the primary site. Insights into tumor and stromal factors governing the intravasation process may help explain why certain tumors exhibit “preferred” pathways for metastatic dissemination, both clinically and in experimental animal models.
Cell Cycle | 2015
Alicia N. Vagnozzi; Jeremy F. Reiter; Sunny Y. Wong
Upon wounding, multiple stem cell populations in the hair follicle (HF) and interfollicular epidermis (IFE) converge at the site of injury. Although these cells can contribute permanently to the regenerating epithelium, it remains unclear whether these contributions vary among cells originating from diverse compartments in the skin. By comparing the fates of several keratinocyte lineages, we observed here an initial decrease in both HF- and IFE-derived cells within the transient acanthotic layers of the regenerating epithelium. At the same time, the relative abundance of early-arriving IFE-derived cells specifically in the wound basal layer declined as later-arriving HF-derived cells entered the site of injury. Although laggard bulge-derived cells were typically constrained at the regenerative periphery, these cells persisted in the wound basal layer. Finally, suppressing Notch enabled IFE-derived cells to out-compete HF-derived cells. Taken together, these findings indicate that IFE-, HF- and bulge-derived cells make distinct contributions to regeneration over time. Furthermore, we speculate that extrinsic, non-genetic factors such as spatial constraint, distance from the wound, and basal versus suprabasal position may largely determine whether a cell ultimately persists.
Cancer Research | 2013
Danislav S. Spassov; Ching Hang Wong; Sunny Y. Wong; Jeremy F. Reiter; Mark M. Moasser
The cell surface glycoprotein Trask/CDCP1 is phosphorylated during anchorage loss in epithelial cells in which it inhibits integrin clustering, outside-in signaling, and cell adhesion. Its role in cancer has been difficult to understand, because of the lack of a discernible pattern in its various alterations in cancer cells. To address this issue, we generated mice lacking Trask function. Mammary tumors driven by the PyMT oncogene and skin tumors driven by the SmoM2 oncogene arose with accelerated kinetics in Trask-deficient mice, establishing a tumor suppressing function for this gene. Mechanistic investigations in mammary tumor cell lines derived from wild-type or Trask-deficient mice revealed a derepression of integrin signaling and an enhancement of integrin-growth factor receptor cross-talk, specifically in unanchored cell states. A similar restrictive link between anchorage and growth in untransformed epithelial cells was observed and disrupted by elimination of Trask. Together our results establish a tumor-suppressing function in Trask that restricts epithelial cell growth to the anchored state.
Cancer Research | 2017
Monique Verhaegen; Doris Mangelberger; Paul W. Harms; Markus Eberl; Dawn M. Wilbert; Julia Meireles; Christopher K. Bichakjian; Thomas L. Saunders; Sunny Y. Wong; Andrzej A. Dlugosz
Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumors cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR.
Journal of Investigative Dermatology | 2014
Sunny Y. Wong; Andrzej A. Dlugosz
Basal cell carcinoma (BCC), the most common and most visible of all human tumors, frequently arises on sun-exposed skin and can produce extensive local damage if left untreated. Targeted therapeutics are now available that interfere with uncontrolled Hedgehog (Hh) signaling, the molecular hallmark of BCC, ushering in a new era in cutaneous oncology. This review describes some of the pivotal work that contributed to our current understanding of BCC and Hh signaling, and ultimately led to the development of drugs targeting the Hh pathway in BCC patients.
PLOS Genetics | 2016
Ying Xiao; Daniel T. Thoresen; Lingling Miao; Jonathan S. Williams; Chaochen Wang; Radhika Atit; Sunny Y. Wong; Isaac Brownell
The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.
Cancer Cell | 2018
Markus Eberl; Doris Mangelberger; Jacob Swanson; Monique Verhaegen; Paul W. Harms; Marcus L. Frohm; Andrzej A. Dlugosz; Sunny Y. Wong
Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh+/Notch+ suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh+++/Notch- basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch.
Molecular Cell | 2018
David R. Raleigh; Navdar Sever; Pervinder K. Choksi; Monika Abedin Sigg; Kelly M. Hines; Bonne M. Thompson; Daniel Elnatan; Priyadarshini Jaishankar; Paola Bisignano; Francesc R. Garcia-Gonzalo; Alexis Leigh Krup; Markus Eberl; Eamon Fx Byrne; Christian Siebold; Sunny Y. Wong; Adam R. Renslo; Michael Grabe; Jeffrey G. McDonald; Libin Xu; Philip A. Beachy; Jeremy F. Reiter
Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11β2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.
Experimental Dermatology | 2018
Jacob Swanson; Alicia N. Vagnozzi; Natalia A. Veniaminova; Sunny Y. Wong
The uppermost aspect of the hair follicle, known as the infundibulum or hair canal, provides a passageway for hair shaft egress and sebum secretion. Recent studies have indicated that the infundibulum and sebaceous ducts are lined by molecularly distinct differentiated cells expressing markers including Keratin 79 and Gata6. Here, we ablated Gata6 from the skin and observed dilation of both the hair canal and sebaceous ducts, independent of gender and hair cycle stage. Constitutive loss of Gata6 yielded only a mild delay in depilation‐induced entry into anagen, while unperturbed mutant mice possessed overtly normal skin and hair. Furthermore, we noted that Keratin 79 and Gata6 expression and localization did not depend upon each other. Our findings implicate Gata6 in maintaining the upper hair follicle and suggest that regulation of this transcription factor may be compromised in pathologies such as acne or infundibular cystic diseases that are characterized by abnormal expansion of this follicular domain.