Sunsun Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunsun Li.
Advanced Materials | 2016
Wenchao Zhao; Deping Qian; Shaoqing Zhang; Sunsun Li; Olle Inganäs; Feng Gao; Jianhui Hou
A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene-based PSCs with respect to the power-conversion efficiency is demonstrated for the first time. An efficiency of >11%, which is among the top values in the PSC field, and excellent thermal stability is obtained using PBDB-T and ITIC as donor and acceptor, respectively.
Journal of the American Chemical Society | 2017
Wenchao Zhao; Sunsun Li; Huifeng Yao; Shaoqing Zhang; Yun Zhang; Bei Yang; Jianhui Hou
A new polymer donor (PBDB-T-SF) and a new small molecule acceptor (IT-4F) for fullerene-free organic solar cells (OSCs) were designed and synthesized. The influences of fluorination on the absorption spectra, molecular energy levels, and charge mobilities of the donor and acceptor were systematically studied. The PBDB-T-SF:IT-4F-based OSC device showed a record high efficiency of 13.1%, and an efficiency of over 12% can be obtained with a thickness of 100-200 nm, suggesting the promise of fullerene-free OSCs in practical applications.
Advanced Materials | 2016
Sunsun Li; Long Ye; Wenchao Zhao; Shaoqing Zhang; Subhrangsu Mukherjee; Harald Ade; Jianhui Hou
Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.
Chemical Reviews | 2016
Huifeng Yao; Long Ye; Hao Zhang; Sunsun Li; Shaoqing Zhang; Jianhui Hou
Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.
Advanced Materials | 2017
Wenchao Zhao; Sunsun Li; Shaoqing Zhang; Xiaoyu Liu; Jianhui Hou
Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend.
Advanced Materials | 2016
Huifeng Yao; Yu Chen; Yunpeng Qin; R. C. Yu; Yong Cui; Bei Yang; Sunsun Li; Kai Zhang; Jianhui Hou
A novel non-fullerene acceptor, possessing a very low bandgap of 1.34 eV and a high-lying lowest unoccupied molecular orbital level of -3.95 eV, is designed and synthesized by introducing electron-donating alkoxy groups to the backbone of a conjugated small molecule. Impressive power conversion efficiencies of 8.4% and 10.7% are obtained for fabricated single and tandem polymer solar cells.
Journal of the American Chemical Society | 2018
Sunsun Li; Long Ye; Wenchao Zhao; Hongping Yan; Bei Yang; Delong Liu; Wanning Li; Harald Ade; Jianhui Hou
To simultaneously achieve low photon energy loss ( Eloss) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low Eloss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.
Advanced Materials | 2018
Wanning Li; Long Ye; Sunsun Li; Huifeng Yao; Harald Ade; Jianhui Hou
Besides broadening of the absorption spectrum, modulating molecular energy levels, and other well-studied properties, a stronger intramolecular electron push-pull effect also affords other advantages in nonfullerene acceptors. A strong push-pull effect improves the dipole moment of the wings in IT-4F over IT-M and results in a lower miscibility than IT-M when blended with PBDB-TF. This feature leads to higher domain purity in the PBDB-TF:IT-4F blend and makes a contribution to the better photovoltaic performance. Moreover, the strong push-pull effect also decreases the vibrational relaxation, which makes IT-4F more promising than IT-M in reducing the energetic loss of organic solar cells. Above all, a power conversion efficiency of 13.7% is recorded in PBDB-TF:IT-4F-based devices.
Journal of Materials Chemistry | 2016
Hao Zhang; Sunsun Li; Bowei Xu; Huifeng Yao; Bei Yang; Jianhui Hou
The fine alignment of molecular energy levels can efficiently enhance the open-circuit voltage (VOC) and improve the photovoltaic performance of polymer solar cells (PSCs). In this work, a novel polythiophene derivative donor with a low HOMO level of −5.6 eV was synthesized by copolymerizing carboxylate- and fluorine-substituted thiophene alternately. The introduction of fluorine downshifted the HOMO level of the polymer. On the other hand, a methyl-end-capped ITIC derivative, with elevated HOMO and LUMO levels, was selected as the acceptor in the pursuit of a higher VOC. A best power conversion efficiency (PCE) of 6.6% with an extremely high VOC of 1.13 V can be obtained after careful morphology optimization. Besides, an unprecedented energy loss of 0.46 eV is seen in this device, which is comparable to perovskite solar cells and has been rarely achieved before in bulk heterojunction PSCs.
Advanced Materials | 2018
Long Ye; Yuan Xiong; Qianqian Zhang; Sunsun Li; Cheng Wang; Zhang Jiang; Jianhui Hou; Wei You; Harald Ade
The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin-coated FTAZ:IT-M devices using a single halogen-free solvent. More importantly, chlorine-free, blade coating of FTAZ:IT-M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X-ray scattering results reveal that large π-π coherence length, high degree of face-on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production.