Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where SunYoung Park is active.

Publication


Featured researches published by SunYoung Park.


Diabetes | 2011

Increased Expression and Activity of 12-Lipoxygenase in Oxygen-Induced Ischemic Retinopathy and Proliferative Diabetic Retinopathy: Implications in Retinal Neovascularization

Mohamed Al-Shabrawey; R. Mussell; Khalid Kahook; Amany Tawfik; Mohamed Eladl; Vijay P. Sarthy; Julian Nussbaum; Ahmed A. Elmarakby; SunYoung Park; Zafer Gurel; Nader Sheibani; Krishna Rao Maddipati

OBJECTIVE Arachidonic acid is metabolized by 12-lipoxygenase (12-LOX) to 12-hydroxyeicosatetraenoic acid (12-HETE) and has an important role in the regulation of angiogenesis and endothelial cell proliferation and migration. The goal of this study was to investigate whether 12-LOX plays a role in retinal neovascularization (NV). RESEARCH DESIGN AND METHODS Experiments were performed using retinas from a murine model of oxygen-induced ischemic retinopathy (OIR) that was treated with and without the LOX pathway inhibitor, baicalein, or lacking 12-LOX. We also analyzed vitreous samples from patients with and without proliferative diabetic retinopathy (PDR). Western blotting and RT-PCR were used to assess the expression of 12-LOX, vascular endothelial growth factor (VEGF), and pigment epithelium–derived factor (PEDF). Liquid chromatography–mass spectrometry was used to assess the amounts of HETEs in the murine retina and human vitreous samples. The effects of 12-HETE on VEGF and PEDF expression were evaluated in Müller cells (rMCs), primary mouse retinal pigment epithelial cells, and astrocytes. RESULTS Retinal NV during OIR was associated with increased 12-LOX expression and 12-, 15-, and 5-HETE production. The amounts of HETEs also were significantly higher in the vitreous of diabetic patients with PDR. Retinal NV was markedly abrogated in mice treated with baicalein or mice lacking 12-LOX. This was associated with decreased VEGF expression and restoration of PEDF levels. PEDF expression was reduced in 12-HETE–treated rMCs, astrocytes, and the retinal pigment epithelium. Only rMCs and astrocytes showed increased VEGF expression by 12-HETE. CONCLUSIONS 12-LOX and its product HETE are important regulators of retinal NV through modulation of VEGF and PEDF expression and could provide a new therapeutic target to prevent and treat ischemic retinopathy.


American Journal of Physiology-cell Physiology | 2010

PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions.

SunYoung Park; Terri A. DiMaio; Elizabeth A. Scheef; Christine M. Sorenson; Nader Sheibani

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin superfamily of cell adhesion molecules with important roles in angiogenesis and inflammation. However, the molecular and cellular mechanisms, and the role that specific PECAM-1 isoforms play in these processes, remain elusive. We recently showed attenuation of retinal vascular development and neovascularization in PECAM-1-deficient (PECAM-1-/-) mice. To gain further insight into the role of PECAM-1 in these processes, we isolated primary retinal endothelial cells (EC) from wild-type (PECAM-1+/+) and PECAM-1-/- mice. Lack of PECAM-1 had a significant impact on endothelial cell-cell and cell-matrix interactions, resulting in attenuation of cell migration and capillary morphogenesis. Mechanistically these changes were associated with a significant decrease in expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability in PECAM-1-/- retinal EC. PECAM-1-/- retinal EC also exhibited a lower rate of apoptosis under basal and challenged conditions, consistent with their increased growth rate. Furthermore, reexpression of PECAM-1 was sufficient to restore migration and capillary morphogenesis of null cells in an isoform-specific manner. Thus PECAM-1 expression modulates proangiogenic properties of EC, and these activities are significantly influenced by alternative splicing of its cytoplasmic domain.


Journal of Cell Science | 2013

Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-β signaling pathways

SunYoung Park; Terri A. DiMaio; Wei Liu; Shoujian Wang; Christine M. Sorenson; Nader Sheibani

Summary Endoglin (Eng) is an auxiliary receptor for transforming growth factor-&bgr; (TGF&bgr;), with important roles in vascular function. TGF&bgr; regulates angiogenesis through balancing the pro-proliferative and pro-differentiation signaling pathways of endothelial cells (EC). However, the contribution of endoglin to these TGF&bgr; activities, and more specifically modulation of EC phenotype, remains elusive. Mutations in endoglin cause hereditary hemorrhagic telangiectasia-1 in humans. The Eng+/− mice are viable and exhibit some of the vascular defects seen in humans with endoglin haploinsufficiency. In the present study we show that haploinsufficiency of endoglin results in attenuation of retinal neovascularization during oxygen-induced ischemic retinopathy. Although the importance of endoglin expression in angiogenesis and vascular development has been demonstrated, the underlying mechanisms remain obscure. To gain detailed insight into the cell autonomous regulatory mechanisms that affect angiogenic properties of EC, we prepared retinal EC from Eng+/+ and Eng+/− Immorto mice. The Eng+/− EC were more adherent, less migratory, and failed to undergo capillary morphogenesis. Aortic sprouting angiogenesis was similarly attenuated in aortas from Eng+/− mice. In addition, Eng+/− EC expressed increased levels of VEGF but reduced expression of endothelial NO synthase and NO production. Mechanistically, these changes were consistent with sustained activation of mitogen-activated protein kinase (MAPK) pathways, and aberrant Smad-dependent signaling pathways in Eng+/− EC. Taken together, our results underscore the importance of endoglin in both canonical and non-canonical TGF&bgr; signaling pathways modulating both the activation and quiescence of the endothelium during angiogenesis.


Clinical Science | 2015

PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis

SunYoung Park; Christine M. Sorenson; Nader Sheibani

Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.


Developmental Biology | 2011

Bim is Responsible for the Inherent Sensitivity of the Developing Retinal Vasculature to Hyperoxia

Shoujian Wang; SunYoung Park; Ping Fei; Christine M. Sorenson

Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim+/+ and bim-/- mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim+/+ and bim-/- mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Opposing effects of bim and bcl-2 on lung endothelial cell migration

Cathy Grutzmacher; SunYoung Park; Tammy L. Elmergreen; Yixin Tang; Elizabeth A. Scheef; Nader Sheibani; Christine M. Sorenson

Integration of cell adhesive, survival, and proliferative processes is essential for capillary morphogenesis of endothelial cells (EC) in vitro and vascular development and function in vivo. Unfortunately, the molecular and cellular mechanisms that impact these processes are poorly defined. Here we examined how lack of bim and/or bcl-2 expression impact lung EC function. The absence of bcl-2 or bim had a significant impact on EC adhesion and migration. Lack of bcl-2 expression decreased lung EC migration, whereas lack of bim expression increased migration compared with their wild-type counterparts. Decreased adhesion to fibronectin and vitronectin was observed in both bcl-2-/- and bim-/- lung EC, with bcl-2-/- EC having very little adhesion to either matrix protein. Capillary morphogenesis was greatly diminished in bcl-2-/- EC, which correlated with decreased lung alveolarization in vivo, an angiogenesis-dependent process. We also observed aberrant production of extracellular matrix proteins, eNOS expression, and nitric oxide production in bcl-2-/- lung EC, which could contribute to inability to undergo capillary morphogenesis. The changes in cell adhesion and migration noted in the absence of bim or bcl-2 were independent of their impact on apoptosis. We observed no significant affect on the steady-state rate of apoptosis of lung EC in the absence of bim or bcl-2. Thus, bcl-2 family members, bim and bcl-2, play a central role in modulation of EC proangiogenic properties, which goes beyond their role as simple mediators of mitochondrial homeostasis and apoptosis.


American Journal of Physiology-renal Physiology | 2013

Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes

Cathy Grutzmacher; SunYoung Park; Yun Zhao; Margaret E. Morrison; Nader Sheibani; Christine M. Sorenson

Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.


American Journal of Physiology-renal Physiology | 2012

BIM deficiency differentially impacts the function of kidney endothelial and epithelial cells through modulation of their local microenvironment.

Nader Sheibani; Margaret E. Morrison; Zafer Gurel; SunYoung Park; Christine M. Sorenson

The extracellular matrix (ECM) acts as a scaffold for kidney cellular organization. Local secretion of the ECM allows kidney cells to readily adapt to changes occurring within the kidney. In addition to providing structural support for cells, the ECM also modulates cell survival, migration, proliferation, and differentiation. Although aberrant regulation of ECM proteins can play a causative role in many diseases, it is not known whether ECM production, cell adhesion, and migration are regulated in a similar manner in kidney epithelial and endothelial cells. Here, we demonstrate that lack of BIM expression differentially impacts kidney endothelial and epithelial cell ECM production, migration, and adhesion, further emphasizing the specialized role of these cell types in kidney function. Bim -/- kidney epithelial cells demonstrated decreased migration, increased adhesion, and sustained expression of osteopontin and thrombospondin-1 (TSP1). In contrast, bim -/- kidney endothelial cells demonstrated increased cell migration, and decreased expression of osteopontin and TSP1. We also observed a fivefold increase in VEGF expression in bim -/- kidney endothelial cells consistent with their increased migration and capillary morphogenesis. These cells also had decreased endothelial nitric oxide synthase activity and nitric oxide bioavailability. Thus kidney endothelial and epithelial cells make unique contributions to the regulation of their ECM composition, with specific impact on adhesive and migratory properties that are essential for their proper function.


Journal of Biophotonics | 2014

Organ specific optical imaging of mitochondrial redox state in a rodent model of hereditary hemorrhagic telangiectasia-1.

Zahra Ghanian; Sepideh Maleki; SunYoung Park; Christine M. Sorenson; Nader Sheibani; Mahsa Ranji

Hereditary Hemorrhagic Telangiectasia-1 (HHT-1) is a vascular disease caused by mutations in the endoglin (Eng)/CD105 gene. The objective of this study was to quantify the oxidative state of a rodent model of HHT-1 using an optical imaging technique. We used a cryofluorescence imaging instrument to quantitatively assess tissue metabolism in this model. Mitochondrial redox ratio (FAD/NADH), FAD RR, was used as a quantitative marker of the metabolic status and was examined in the kidneys, and eyes of wild-type and Eng +/- mice. Kidneys and eyes from wild-type P21, 6W, and 10M old mice showed, respectively, a 9% (±2), 24% (±0.4), 15% (±1), and 23% (±4), 33% (±0.6), and 30% (±2) change in the mean FAD RR compared to Eng +/- mice at the same age. Thus, endoglin haploinsufficiency is associated with less oxidative stress in various organs and mitigation of angiogenesis.


American Journal of Physiology-cell Physiology | 2017

PEDF expression affects retinal endothelial cell proangiogenic properties through alterations in cell adhesive mechanisms

Juliana Falero-Perez; SunYoung Park; Christine M. Sorenson; Nader Sheibani

Pigment epithelium-derived factor (PEDF) is an endogenous inhibitor of angiogenesis. Although various ocular cell types including retinal endothelial cells (EC) produce PEDF, we know very little about cell autonomous effects of PEDF in these cell types. Here we determined how PEDF expression affects retinal EC proangiogenic properties. Retinal EC were prepared from wild-type (PEDF+/+) and PEDF-deficient (PEDF-/-) mice. The identity of EC was confirmed by staining for specific markers including vascular endothelial cadherin, CD31, and B4-lectin. Retinal EC also expressed VEGF receptor 1 and endoglin, as well as ICAM-1, ICAM-2, and VCAM-1. PEDF-/- retinal EC were more proliferative, less apoptotic when challenged with H2O2, less migratory, and less adherent compared with PEDF+/+ EC. These changes could be associated, at least in part, with increased levels of tenascin-C, fibronectin, thrombospondin-1 and collagen IV, and lower amounts of osteopontin. PEDF-/- EC also exhibited alterations in expression of a number of integrins including α2, αv, β1, β8, and αvβ3, and cell-cell adhesion molecules including CD31, zonula occluden-1, and occludin. These observations correlated with attenuation of capillary morphogenesis and increased levels of oxidative stress in PEDF-/- EC. PEDF-/- EC also produced lower levels of VEGF compared with PEDF+/+ cells. Thus, PEDF deficiency has a significant impact on retinal EC adhesion and migration, perhaps through altered production of extracellular matrix and junctional proteins in response to increased oxidative stress affecting their proangiogenic activity.

Collaboration


Dive into the SunYoung Park's collaboration.

Top Co-Authors

Avatar

Nader Sheibani

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christine M. Sorenson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Zafer Gurel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Margaret E. Morrison

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amany Tawfik

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Cathy Grutzmacher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Scheef

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Julian Nussbaum

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Juliana Falero-Perez

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge