Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suode Zhang is active.

Publication


Featured researches published by Suode Zhang.


Journal of Biological Chemistry | 2006

Solution Structure and Characterization of the LGR8 Receptor Binding Surface of Insulin-like Peptide 3

Suode Zhang; Feng Lin; Norelle L. Daly; Daniel J. Scott; Richard A. Hughes; Ross A. D. Bathgate; David J. Craik; John D. Wade

Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include ArgB16 and ValB19, with HisB12 and ArgB20 playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, TrpB27, to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.


Journal of Medicinal Chemistry | 2012

Minimization of Human Relaxin-3 Leading to High-Affinity Analogues with Increased Selectivity for Relaxin-Family Peptide 3 Receptor (RXFP3) over RXFP1

Fazel Shabanpoor; Mohammad Akhter Hossain; Philip J. Ryan; Alessia Belgi; Sharon Layfield; Martina Kocan; Suode Zhang; Chrishan S. Samuel; Andrew L. Gundlach; Ross A. D. Bathgate; Frances Separovic; John D. Wade

Relaxin-3 is a neuropeptide that is implicated in the regulation of stress responses and memory. The elucidation of its precise physiological role(s) has, however, been hampered by cross-activation of the relaxin-2 receptor, RXFP1, in the brain. The current study undertook to develop analogues of human relaxin-3 (H3 relaxin) that can selectively bind and activate its receptor, RXFP3. We developed a high-affinity selective agonist (analogue 2) by removal of the intra-A chain disulfide bond and deletion of 10 residues from the N terminus of the A chain. Further truncation of this analogue from the C terminus of the B chain to Cys(B22) and addition of an Arg(B23) led to a high-affinity, RXFP3-selective, competitive antagonist (analogue 3). Central administration of analogue 2 in rats increased food intake, which was blocked by prior coadministration of analogue 3. These novel RXFP3-selective peptides represent valuable pharmacological tools to study the physiological roles of H3 relaxin/RXFP3 systems in the brain and important leads for the development of novel compounds for the treatment of affective and cognitive disorders.


ChemBioChem | 2008

Synthesis, Conformation, and Activity of Human Insulin-Like Peptide 5 (INSL5)

Mohammed Akhter Hossain; Ross A. D. Bathgate; Chze K. Kong; Fazel Shabanpoor; Suode Zhang; Linda M. Haugaard-Jönsson; Geoffrey W. Tregear; John D. Wade

Insulin‐like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two‐chain sequence (A and B) that contained the insulin‐like disulfide cross‐links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5–RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid‐phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as Nα‐deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin‐3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK‐N‐MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant‐derived peptide, and will be an important tool for the determination of its biological function.


Organic and Biomolecular Chemistry | 2009

Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity

Mohammed Akhter Hossain; Suode Zhang; Ross A. D. Bathgate; Geoffrey W. Tregear; Bianca J. van Lierop; Andrea J. Robinson; John D. Wade

Replacement of disulfide bonds with non-reducible isosteres can be a useful means of increasing the in vivo stability of a protein. We describe the replacement of the A-chain intramolecular disulfide bond of human relaxin-3 (H3 relaxin, INSL7), an insulin-like peptide that has potential applications in the treatment of stress and obesity, with the physiologically stable dicarba bond. Solid phase peptide synthesis was used to prepare an A-chain analogue in which the two cysteine residues that form the intramolecular bond were replaced with allylglycine. On-resin microwave-mediated ring closing metathesis was then employed to generate the dicarba bridge. Subsequent cleavage of the peptide from the solid support, purification of two isomers and their combination with the B-chain via two intermolecular disulfide bonds, then furnished two isomers of dicarba-H3 relaxin. These were characterized by CD spectroscopy, which suggested a structural similarity to the native peptide. Additional analysis by solution NMR spectroscopy also identified the likely cis/trans form of the analogs. Both peptides demonstrated binding affinities that were equivalent to native H3 relaxin on RXFP1 and RXFP3 expressing cells. However, although the cAMP activity of the analogs on RXFP3 expressing cells was similar to the native peptide, the potency on RXFP1 expressing cells was slightly lower. The data confirmed the use of a dicarba bond as a useful isosteric replacement of the disulfide bond.


Bioconjugate Chemistry | 2008

Solid-Phase Synthesis of Europium-Labeled Human INSL3 as a Novel Probe for the Study of Ligand−Receptor Interactions

Fazel Shabanpoor; Richard A. Hughes; Ross A. D. Bathgate; Suode Zhang; Denis B. Scanlon; Feng Lin; Mohammed Akhter Hossain; Frances Separovic; John D. Wade

An efficient solid-phase synthesis protocol has been developed which, together with regioselective sequential formation of the three disulfide bonds, enabled the preparation of specifically monolanthanide (europium)-labeled human insulin-like peptide 3 (INSL3) for the study of its interaction with its G-protein-coupled receptor, RXFP2, via time-resolved fluorometry. A commercially available chelator, diethylene triamine pentaacetic acid (DTPA), was coupled to the N-terminus of the INSL3 A-chain on the solid phase, and then a coordination complex between europium ion and DTPA was formed using EuCl 3 to protect the chelator from production of an unidentified adduct during subsequent combination of the A- and B-chains. The labeled peptide was purified in high yield using high-performance liquid chromatography with nearly neutral pH buffers to prevent the liberation of Eu (3+) from the chelator. Using time-resolved fluorometry, saturation binding assays were undertaken to determine the binding affinity (p K d) of labeled INSL3 for RXFP2 in HEK-293T cells stably expressing RXFP2. The dissociation constant of DTPA-labeled INSL3 (9.05 +/- 0.03, n = 3) that was obtained from saturation binding experiments was comparable to that of (125)I-labeled INSL3 (9.59 +/- 0.09, n = 3). The receptor binding affinity (p K i) of human INSL3 was determined to be 9.27 +/- 0.06, n = 3, using Eu-DTPA-INSL3 as a labeled ligand, which again is similar to that obtained when (125)I-INSL3 was used as labeled ligand (9.34 +/- 0.02, n = 4). This novel lanthanide-coordinated, DTPA-labeled INSL3 has excellent sensitivity, stability, and high specific activity, properties that will be particularly beneficial in high-throughput screening of INSL3 analogues in structure-activity studies.


Biopolymers | 2011

Peptide-based leptin receptor antagonists for cancer treatment and appetite regulation

Laszlo Otvos; Ilona Kovalszky; Laura Scolaro; Andras Sztodola; Julia Olah; Marco Cassone; Daniel Knappe; Ralf Hoffmann; Sándor Lovas; Marcus P. D. Hatfield; Gabriella Beko; Suode Zhang; John D. Wade; Eva Surmacz

Leptin, a multifunctional hormone, controls various processes in both the central nervous system and in peripheral tissues. Because of the presence of multiple leptin/receptor (ObR) interaction sites and diverse leptin activities, the literature lacks truly monofunctional leptin protein derivatives or fragments. To date, selective ObR antagonists have not been reported. We developed short, pharmacologically advantageous peptide analogs of ObR‐binding site III of leptin that acted as selective ObR inhibitors without any partial agonistic activity. These reduced leptin‐dependent growth and signaling in cancer cell lines at picomolar and low nanomolar concentrations. In immunocompromised mice the peptides suppressed the growth of rapidly proliferating orthotopic human breast cancer xenografts by 50% when administered either intraperitoneally (i.p.) or subcutaneously (s.c.) for 38 days at a 0.1 mg/kg/day dose. The peptides were distributed to the brain, and when added to growing C57BL/6 normal mice i.p., s.c., or orally, the lead antagonist accelerated normal weight increase without producing any toxic effects. Weight gain increases could not be observed after 10–12 days of treatment indicating that the mice became resistant to the central nervous system activity of leptin antagonists. However, in normal growing rats the intranasal administration at 0.1 mg/kg/day for 20 days resulted in a 2% net total body weight gain without signs of resistance induction. In addition to the potential of these peptides in drug development against primary and metastatic tumors and cachexia, our data confirm that resistance to leptin resides at the blood‐brain barrier.


Biochemistry | 2011

Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation.

Alessia Belgi; Mohammed Akhter Hossain; Fazel Shabanpoor; Linda Chan; Suode Zhang; Ross A. D. Bathgate; Geoffrey W. Tregear; John D. Wade

Insulin-like peptide 5 (INSL5) is a member of insulin/relaxin superfamily of peptides. It has recently been identified as the cognate ligand for the G-protein-coupled receptor, RXFP4. Although the complete physiological role of this naturally occurring peptide is still under investigation, there is evidence that it acts to both stimulate appetite and activate colon motility. This suggests that both agonists and antagonists of the peptide may have potential therapeutic applications. To further investigate the physiological role of this peptide and because of the ready availability of the mouse as an experimental animal, the preparation of mouse INSL5 was undertaken. Because of its complex structure and the intractable nature of the two constituent chains, different solid phase synthesis strategies were investigated, including the use of a temporary B-chain solubilizing tag. Unfortunately, none provided significantly improved yield of purified mouse INSL5 which reflects the complexity of this peptide. In addition to the native peptide, two mouse INSL5 analogues were also prepared. One had its two chains as C-terminal amides, and the other contained a europium chelate monolabel for use in RXFP4 receptor assays. It was found that the INSL5 amide was substantially less potent than the native acid form. A similar observation was made for the human peptide acid and amide, highlighting the necessity for free C-terminal carboxylates for function. Two additional human INSL5 analogues were prepared to further investigate the necessity of a free C-terminal. The results together provide a first insight into the mechanism whereby INSL5 binds to and activates RXFP4.


International Journal of Peptide Research and Therapeutics | 2008

Simultaneous Post-cysteine(S-Acm) Group Removal Quenching of Iodine and Isolation of Peptide by One Step Ether Precipitation

Suode Zhang; Feng Lin; Mohammed Akhter Hossain; Fazel Shabanpoor; Geoffrey W. Tregear; John D. Wade

The S-acetamidomethyl (Acm) protecting group is widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report a simple method for simultaneous post-cysteine (Acm) group removal quenching of iodination and isolation. Use of large volumes of diethyl ether for direct precipitation action of the oxidized peptide from the 90 or 95% aqueous acetic acid solution affords nearly quantitative recovery of largely iodine-free peptide ready for direct purification. It was successfully applied to the synthesis of various peptides including human insulin-like peptide 3 analogues. Although recovery yields were comparable to the traditionally used ascorbic acid quenching method, this new approach offers significant advantages such as more simple utility, minimal side reactions, and greater cost effectiveness.


Peptides | 2010

Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2

Suode Zhang; Richard A. Hughes; Ross A. D. Bathgate; Fazel Shabanpoor; M. Akhter Hossain; Feng Lin; Bianca J. van Lierop; Andrea J. Robinson; John D. Wade

INSL3 is a member of the insulin-IGF-relaxin superfamily and plays a key role in male fetal development and in adult germ cell maturation. It is the cognate ligand for RXFP2, a leucine-rich repeat containing G-protein coupled receptor. To date, and in contrast to our current knowledge of the key structural features that are required for the binding of INSL3 to RXFP2, comparatively little is known about the key residues that are required to elicit receptor activation and downstream cell signaling. Early evidence suggests that these are contained principally within the A-chain. To further explore this hypothesis, we have undertaken an examination of the functional role of the intra-A-chain disulfide bond. Using solid-phase peptide synthesis together with regioselective disulfide bond formation, two analogs of human INSL3 were prepared in which the intra-chain disulfide bond was replaced, one in which the corresponding Cys residues were substituted with the isosteric Ser and the other in which the Cys were removed altogether. Both of these peptides retained nearly full RXFP2 receptor binding but were devoid of cAMP activity (receptor activation), indicating that the intra-A-chain disulfide bond makes a significant contribution to the ability of INSL3 to act as an RXFP2 agonist. Replacement of the disulfide bond with a metabolically stable dicarba bond yielded two isomers of INSL3 that each exhibited bioactivity similar to native INSL3. This study highlights the critical structural role played by the intra-A-chain disulfide bond of INSL3 in mediating agonist actions through the RXFP2 receptor.


Journal of Medicinal Chemistry | 2013

Minimum Active Structure of Insulin-like Peptide 5

Alessia Belgi; Ross A. D. Bathgate; Martina Kocan; Nitin A. Patil; Suode Zhang; Geoffrey W. Tregear; John D. Wade; Mohammed Akhter Hossain

Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis. This peptide thus has considerable potential for the treatment of eating disorders, obesity, and/or diabetes. However, the synthesis of INSL5 is extremely challenging either by chemical or recombinant means. The A-chain is very poorly soluble and the B-chain is highly aggregating in nature which, together, makes their postsynthesis handling and purification very difficult. Given these difficulties, we have developed a highly active INSL5 analogue that has a much simpler structure with two disulfide bonds and is thus easier to assemble compared to native INSL5. This minimized peptide represents an attractive new mimetic for investigating the functional role of INSL5.

Collaboration


Dive into the Suode Zhang's collaboration.

Top Co-Authors

Avatar

John D. Wade

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Ross A. D. Bathgate

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Akhter Hossain

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Feng Lin

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Scott

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge