Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suparerk Borwornpinyo is active.

Publication


Featured researches published by Suparerk Borwornpinyo.


Human Gene Therapy | 2016

Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the βA(T87Q)-Globin Gene

Olivier Negre; Anne-Virginie Eggimann; Yves Beuzard; Jean-Antoine Ribeil; Philippe Bourget; Suparerk Borwornpinyo; Suradej Hongeng; Salima Hacein-Bey; Marina Cavazzana; Philippe Leboulch; Emmanuel Payen

β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (βAT87Q-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. βAT87Q-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.


BMC Biotechnology | 2011

Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers.

Khanit Sa-ngiamsuntorn; Adisak Wongkajornsilp; Kanda Kasetsinsombat; Sunisa Duangsa-ard; Lalana Nuntakarn; Suparerk Borwornpinyo; Pravit Akarasereenont; S. Limsrichamrern; Suradej Hongeng

BackgroundThe strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies.ResultsThe hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells.ConclusionThe hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450.


Journal of Biotechnology | 2013

Using double-stranded RNA for the control of Laem-Singh Virus (LSNV) in Thai P. monodon.

Vanvimon Saksmerprome; Thitiporn Thammasorn; Sarocha Jitrakorn; Somjai Wongtripop; Suparerk Borwornpinyo; Boonsirm Withyachumnarnkul

Viral inhibition by double-stranded (ds)RNA is a potential therapeutic approach for controlling shrimp viral diseases. Here, we describe the successful oral application of dsRNA targeting Laem-Singh Virus (LSNV) to diminish monodon slow growth syndrome (MSGS) in Thai Penaeus monodon. Shrimp feed formulated with bacterially expressed LSNV-dsRNA was given to shrimp for 9 weeks. RT-PCR results revealed that all control shrimp were LSNV-positive at the end of experiment, while the shrimp that received dsRNA-feed exhibited 20-60% LSNV reduction. The average body weight of treated shrimp (number of shrimp=100) was significantly higher than that of the control group. Such increase is likely due to the elimination of MSGS caused by LSNV, as size variation of the treated group is much lower than that in the control group. This study demonstrates for the first time that feed with LSNV-specific dsRNA promotes the overall growth of P. monodon and relieves MSGS condition in LSNV-infected shrimp. The work reaffirms the potential of dsRNA application for controlling viral disease in shrimp farming.


Cellular Signalling | 2014

Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration.

Keatdamrong Janpipatkul; Kanoknetr Suksen; Suparerk Borwornpinyo; Natee Jearawiriyapaisarn; Suradej Hongeng; Pawinee Piyachaturawat; Arthit Chairoungdua

Currently, there is no effective treatment for cholangiocarcinoma (CCA), which is the most prevalent in the northeastern part of Thailand. A new molecular target for the treatment of CCA is, therefore, urgently needed. Although L-type amino acid transporter 1 (LAT1) is highly expressed in CCA cells, its role in malignant phenotypes of CCA cells remains unclear. This study aimed to investigate the impact of LAT1 on proliferation, migration, and invasion of KKU-M213 cells, the CCA cells derived from Thai patients with intrahepatic cholangiocarcinoma. Results showed that KKU-M213 cells expressed all LAT isoforms (LAT1, LAT2, LAT3 and LAT4). The expressions of LAT1 and its associated protein 4F2hc were highest whereas those of LAT2 and LAT4 were extremely low. Treatment with 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced L-leucine uptake concomitant with an inhibition of cell motility and, to a lesser extent, on cell proliferation. It also induced a time dependent up-regulation of LAT1 and 4F2hc expressions. Similarly, cell migration and invasion, but not proliferation, were reduced in LAT1 knockdown KKU-M213 cells. In addition, silencing of LAT1 inhibited the expressions of 4F2hc mRNA and protein whereas the expression of microRNA-7, the 4F2hc down-regulator, was increased. Furthermore, the phosphorylation levels of ERK1/2 and p70S6K were reduced after LAT1 knockdown. Collectively, these results suggest that suppression of cell invasion and migration in LAT1 knockdown KKU-M213 cells may be partly mediated through the inhibition of the 4F2hc-signaling pathway by the up-regulation of microRNA-7. Based on this finding, LAT1 may be a potential therapeutic target for treating CCA.


Clinical and Experimental Pharmacology and Physiology | 2011

Role of Na+/H+ exchanger 3 in the acidification of the male reproductive tract and male fertility

Chumpol Pholpramool; Suparerk Borwornpinyo; Anuwat Dinudom

1. Male fertility is a complex process that is dependent on sex hormones and the normal function of the reproductive organs. Defects of these organs result in abnormal sperm production and function, which, in turn, lead to infertility.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2017

A rhodol-based fluorescent chemosensor for hydrazine and its application in live cell bioimaging

Khomsan Tiensomjitr; Rattha Noorat; Kanokorn Wechakorn; Samran Prabpai; Kanoknetr Suksen; Phongthon Kanjanasirirat; Yongyut Pewkliang; Suparerk Borwornpinyo; Palangpon Kongsaeree

A rhodol cinnamate fluorescent chemosensor (RC) has been developed for selective detection of hydrazine (N2H4). In aqueous medium, the rhodol-based probe exhibited high selectivity for hydrazine among other molecules. The addition of hydrazine triggered a fluorescence emission with 48-fold enhancement based on hydrazinolysis and a subsequent ring-opening process. The chemical probe also displayed a selective colorimetric response toward N2H4 from colorless solution to pink, readily observed by the naked eye. The detection limit of RC for hydrazine was calculated to be 300nM (9.6ppb). RC is membrane permeable and was successfully demonstrated to detect hydrazine in live HepG2 cells by confocal fluorescence microscopy.


Virology Journal | 2016

A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host

Khanit Sa-ngiamsuntorn; Adisak Wongkajornsilp; Phetcharat Phanthong; Suparerk Borwornpinyo; Narisorn Kitiyanant; Wasun Chantratita; Suradej Hongeng

BackgroundHepatitis C virus (HCV) could induce chronic liver diseases and hepatocellular carcinoma in human. The use of primary human hepatocyte as a viral host is restrained with the scarcity of tissue supply. A culture model restricted to HCV genotype 2a (JFH-1) has been established using Huh7-derived hepatocyte. Other genotypes including the wild-type virus could not propagate in Huh7, Huh7.5 and Huh7.5.1 cells.MethodsFunctional hepatocyte-like cells (HLCs) were developed from normal human iPS cells as a host for HCV infection. Mature HLCs were identified for selective hepatocyte markers, CYP450s, HCV associated receptors and HCV essential host factors. HLCs were either transfected with JFH-1 HCV RNA or infected with HCV particles derived from patient serum. The enhancing effect of α-tocopherol and the inhibitory effects of INF-α, ribavirin and sofosbuvir to HCV infection were studied. The HCV viral load and HCV RNA were assayed for the infection efficiency.ResultsThe fully-developed HLCs expressed phase I, II, and III drug-metabolizing enzymes, HCV associated receptors (claudin-1, occludin, CD81, ApoE, ApoB, LDL-R) and HCV essential host factors (miR-122 and SEC14L2) comparable to the primary human hepatocyte. SEC14L2, an α-tocopherol transfer protein, was expressed in HLCs, but not in Huh7 cell, had been implicated in effective HCVser infection. The HLCs permitted not only the replication of HCV RNA, but also the production of HCV particles (HCVcc) released to the culture media. HLCs drove higher propagation of HCVcc derived from JFH-1 than did the classical host Huh7 cells. HLCs infected with either JFH-1 or wild-type HCV expressed HCV core antigen, NS5A, NS5B, NS3 and HCV negative-stand RNA. HLCs allowed entire HCV life cycle derived from either JFH-1, HCVcc or wild-type HCV (genotype 1a, 1b, 3a, 3b, 6f and 6n). Further increasing the HCVser infection in HLCs was achieved by incubating cell with α-tocopherol. The supernatant from infected HLCs could infect both naïve HLC and Huh7 cell. Treating infected HLC with INF-α and ribavirin decreased HCV RNA in both the cellular fraction and the culture medium. The HLCs reacted to HCVcc or wild-type HCV infection by upregulating TNF-α, IL-28B and IL-29.ConclusionsThis robust cell culture model for serum-derived HCV using HLCs as host cells provides a remarkable system for investigating HCV life cycle, HCV-associated hepatocellular carcinoma development and the screening for new anti HCV drugs.


Malaria Journal | 2018

A novel immortalized hepatocyte-like cell line (imHC) supports in vitro liver stage development of the human malarial parasite Plasmodium vivax

Yongyut Pewkliang; Siriwan Rungin; Kaewta Lerdpanyangam; Apisak Duangmanee; Phongthon Kanjanasirirat; Phichaya Suthivanich; Khanit Sa-ngiamsuntorn; Suparerk Borwornpinyo; Jetsumon Sattabongkot; Rapatbhorn Patrapuvich; Suradej Hongeng

BackgroundEradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay.MethodsA novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay.ResultsimHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening.ConclusionsimHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites.


Journal of Natural Products | 2017

Scalemic Caged Xanthones Isolated from the Stem Bark Extract of Garcinia propinqua

Teerayut Sriyatep; Raymond J. Andersen; Brian O. Patrick; Stephen G. Pyne; Chatchai Muanprasat; Sawinee Seemakhan; Suparerk Borwornpinyo; Surat Laphookhieo

Seven new caged xanthones, doitunggarcinones E-K (1-7), all as scalemic mixtures and 10 known compounds (8-17), were isolated from the stem bark extract of Garcinia propinqua. The structures were elucidated on the basis of spectroscopic methods. The separation of the enantiomers of 1-6 was achieved by semipreparative chiral HPLC. The absolute configuration of compound (+)-1 was determined by single-crystal X-ray crystallographic analysis using Cu Kα radiation. The absolute configurations of the other related compounds were determined from comparisons of their ECD spectra with that of compound (+)-1. Compounds (-)-6 and 7 showed cytotoxicity against a colon cancer cell line with IC50 values of 14.23 and 23.95 μM, respectively.


Stem Cell Research | 2015

Generation of iPSC line MU011.A-hiPS from homozygous α-thalassemia fetal skin fibroblasts

Amornrat Tangprasittipap; Chonthicha Satirapod; Bunyada Jittorntrum; Sassawat Lertritanan; Usanarat Anurathaphan; Phetcharat Phanthong; Suparerk Borwornpinyo; Narisorn Kitiyanant; Suradej Hongeng

Human iPSC line MU011.A-hiPS was generated from homozygous α-thalassemia (-(SEA)/-(SEA)) fetal skin fibroblasts using a non-integrative reprogramming method. Reprogramming factors OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 contained in three episomal vectors were delivered using electroporation.

Collaboration


Dive into the Suparerk Borwornpinyo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge