Suphat Chummuneerat
Curtin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suphat Chummuneerat.
Journal of traffic and transportation engineering | 2014
Suphat Chummuneerat; Peerapong Jitsangiam; Hamid Nikraz
Abstract: The resilient modulus (RM) of hydrated cement treated crushed rock base (HCTCRB) affected by amount of hydration periods, compaction and dryback processes was presented using repeated load triaxial tests. The related trends of RM corresponding to the different hydration periods still cannot be concluded. Instead, It is found that the moisture content plays more major influence on the RM performance. Higher additional water during compaction of HCTCRB, even at its optimum moisture content and induced higher dry density, led to the inferior RM performance compared to the sample without water addition. The RM of damper samples can be improved through dryback process and superior to that of the sample without water addition at the same moisture content. However, the samples without water addition during compaction deliver the comparable RM values even its dry density is lower than the other two types. These results indicate the significant influence of moisture content to the performances of HCTCRB with regardless of the dry density. Finally, the experimental results of HCTCRB and parent material are evaluated with the K - θ model and the model recommended by Austroads. These two models provide the excellent fit of the tested results with high degree of determination.
Journal of Materials in Civil Engineering | 2016
Peerapong Jitsangiam; Korakod Nusit; Suphat Chummuneerat; Prinya Chindaprasirt; Preda Pichayapan
AbstractThis paper presents an examination of the fatigue characteristics of cement-treated base (CTB), a cement-stabilized material for use in road pavement construction based on CTB beam test specimens prepared and tested under laboratory conditions. The beam fatigue protocol for asphalt concrete, following the Austroads standard test method of AG:PT/T233, were adapted to examine the fatigue characteristics of the CTB test specimens. Standard road base (Granite/Diorite) from the local quarry in Western Australia was employed as the parent material of CTB. The beam-fatigue tests were conducted under the strain-controlled (constant strain) and stress-controlled (constant stress) testing conditions with varying cement contents (3–10%) of CTB test specimens. Two different loading waveforms of sinusoidal and haversine load curves were also investigated. The results show that for the strain-controlled testing condition, the fatigue characteristics of the CTB test specimens were not affected by the difference ...
Journal of Materials in Civil Engineering | 2014
Peerapong Jitsangiam; Suphat Chummuneerat; Tanapon Phenrat; Hamid Nikraz
AbstractHydrated cement–treated crushed rock base (HCTCRB) is produced by adding 2% Portland cement (by mass) to a standard crushed rock base (CRB) at an optimum moisture condition. The unique production process for HCTCRB is different from that of a common cement-treated base in that a remixing process is performed after the hydration of cement, preventing cementitious bonding to maintain the unbound material characteristics with an improvement in material engineering properties. This paper presents the resilient modulus (MR) and permanent deformation (PD) characteristics of HCTCRB after variable hydration periods, water addition during compaction, and dryback. The difference in material hydration periods affected the performance of HCTCRB. However, in this study, a consistent performance trend with various hydration periods could not be found. Moisture contents have a major influence on the properties of HCTCRB. The results indicate that a higher moisture content increases the PD and decreases the MR of...
Australian journal of civil engineering | 2013
Peerapong Jitsangiam; Suphat Chummuneerat; Hamid Nikraz
In North America, cement-modified soil (CMS) is described as a soil that has been treated with a relatively small amount of cement in order to improve its engineering properties and make it suitable for construction purposes. CMS leads to a typical soil stabilisation technique employed in Western Australian base course material: hydrated cement treated crushed rock base (HCTCRB), which incorporates an additional hydration process which differs from the original CMS technique. However, because the HCTCRB technique was developed mainly by an empirical approach based on pavement trials, it is posited that HCTCRB itself may be inconsistent with regard to fundamentals such as quality control and uniformity of elements. This then causes uncertainty during the application of HCTCRB with regard to its essential qualities, mix proportion, mixing and curing processes, and construction processes. The effects of these ambiguities need to be better understood in order to maximise the application of this material to new pavement design methods where reliability and consistency is crucial. This study aimed to comprehensively investigate the effects on HCTRB of the amounts of mixing water added, hydration period, and compaction effort on physical properties (ie. gradation and surface properties), and mechanical properties (ie. shear strength parameters, resilient modulus and permanent deformation) using scanning electron microscopy (SEM), conventional triaxial tests and repeated load triaxial tests. HCTCRB demonstrates superior performance to the original material in terms of resilient modulus and permanent deformation. SEM and static triaxial tests revealed that crushed rock base shows higher internal friction angles but less cohesion than HCTCRB. The hydration period of HCTCRB during the manufacturing process was found to have an insignificant effect on particle size distribution. However, hydration period does affect the permanent deformation and resilient modulus characteristics of HCTCRB.
International Journal of Geomate | 2017
Peerapong Jitsangiam; Suphat Chummuneerat; Korakod Nusit; T. Tanchaisawat; Hamid Nikraz
The unsaturated unbound granular materials (UUGMs) as a base course layer play a major role in the overall performance of the multi-layered flexible pavement system. In theory, the cyclic response of UUGMs (under traffic loading) depends greatly upon moisture content and matric suction, but these effects have been conventionally difficult to quantify. This paper presents a new mechanistic framework for characterising the cyclic behaviour of UUGMs with differing levels of moisture content and density, and in various in-service stress conditions in pavements without real cyclic testing on UUGMs. These parameters would typically be considered to gain a more precise pavement evaluation. In this study, a normalisation procedure was performed to incorporate matric suction into the cyclic response evaluation of UUGMs with a range of moisture contents and without actual suction measurement. A new soil suction model with three density-independent parameters was derived from a series of static triaxial compression tests based on the traditional triaxial facilities. The suction model developed can be used, with the Bishop effective stress constitutive model, to successfully evaluate the resilient response of UUGMs under the stated conditions. With the inclusion of matric suction, this new mechanical framework provides a more reliable resilient modulus prediction model.
Journal of civil engineering and architecture | 2012
Peerapong Jitsangiam; Hamid Nikraz; Komsun Siripun; Suphat Chummuneerat
Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42° for the internal friction angle (). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million.
Journal of Materials in Civil Engineering | 2015
Peerapong Jitsangiam; Kornkanok Boonserm; Tanapon Phenrat; Suphat Chummuneerat; Prinya Chindaprasirt; Hamid Nikraz
2nd International Conference on Transportation Geotechnics (ICTG)International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) | 2012
Suphat Chummuneerat; Peerapong Jitsangiam; Hamid Nikraz
Procedia Engineering | 2016
Suphat Chummuneerat; Peerapong Jitsangiam
12th Australia New Zealand Conference on Geomechanics | 2015
Suphat Chummuneerat; Peerapong Jitsangiam; Hamid Nikraz