Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Supinder S. Bedi is active.

Publication


Featured researches published by Supinder S. Bedi.


The Journal of Neuroscience | 2010

Chronic Spontaneous Activity Generated in the Somata of Primary Nociceptors Is Associated with Pain-Related Behavior after Spinal Cord Injury

Supinder S. Bedi; Qing Yang; Robyn J. Crook; Junhui Du; Zizhen Wu; Harvey M. Fishman; Raymond J. Grill; Susan M. Carlton; Edgar T. Walters

Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.


Journal of Neuroinflammation | 2012

Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population

Peter A. Walker; Supinder S. Bedi; Shinil K. Shah; Fernando Jimenez; Hasen Xue; Jason Hamilton; Philippa Smith; Chelsea Thomas; Robert W. Mays; Shibani Pati; Charles S. Cox

IntroductionWe have demonstrated previously that the intravenous delivery of multipotent adult progenitor cells (MAPC) after traumatic brain injury affords neuroprotection via interaction with splenocytes, leading to an increase in systemic anti-inflammatory cytokines. We hypothesize that the observed modulation of the systemic inflammatory milieu is related to T regulatory cells and a subsequent increase in the locoregional neuroprotective M2 macrophage population.MethodsC57B6 mice were injected with intravenous MAPC 2 and 24 hours after controlled cortical impact injury. Animals were euthanized 24, 48, 72, and 120 hours after injury. In vivo, the proportion of CD4+/CD25+/FOXP3+ T-regulatory cells were measured in the splenocyte population and plasma. In addition, the brain CD86+ M1 and CD206+ M2 macrophage populations were quantified. A series of in vitro co-cultures were completed to investigate the need for direct MAPC:splenocyte contact as well as the effect of MAPC therapy on M1 and M2 macrophage subtype apoptosis and proliferation.ResultsSignificant increases in the splenocyte and plasma T regulatory cell populations were observed with MAPC therapy at 24 and 48 hours, respectively. In addition, MAPC therapy was associated with an increase in the brain M2/M1 macrophage ratio at 24, 48 and 120 hours after cortical injury. In vitro cultures of activated microglia with supernatant derived from MAPC:splenocyte co-cultures also demonstrated an increase in the M2/M1 ratio. The observed changes were secondary to an increase in M1 macrophage apoptosis.ConclusionsThe data show that the intravenous delivery of MAPC after cortical injury results in increases in T regulatory cells in splenocytes and plasma with a concordant increase in the locoregional M2/M1 macrophage ratio. Direct contact between the MAPC and splenocytes is required to modulate activated microglia, adding further evidence to the central role of the spleen in MAPC-mediated neuroprotection.


Stem Cells Translational Medicine | 2013

Intravenous Multipotent Adult Progenitor Cell Therapy Attenuates Activated Microglial/Macrophage Response and Improves Spatial Learning After Traumatic Brain Injury

Supinder S. Bedi; Robert A. Hetz; Chelsea Thomas; Philippa Smith; Alex Olsen; Stephen Williams; Hasen Xue; Kevin R. Aroom; Karen S. Uray; Jason Hamilton; Robert W. Mays; Charles S. Cox

We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood‐brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long‐term behavioral and anti‐inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI‐2) or 10 million cells per kilogram (CCI‐10). CCI‐10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI‐10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI‐10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI‐10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long‐term improvements in spatial learning as well as attenuation of neuroinflammation.


Journal of Neuroscience Methods | 2013

Immunomagnetic enrichment and flow cytometric characterization of mouse microglia

Supinder S. Bedi; Philippa Smith; Robert A. Hetz; Hasen Xue; Charles S. Cox

BACKGROUND The inflammatory response after a CNS injury is regulated by microglia/macrophages. Changes in the ratio of M1 classically activated pro-inflammatory cells versus M2 alternatively activated anti-inflammatory cells reveal the direction of the immune response. These cells are routinely identified and enumerated by morphology and cell-surface markers using immunohistochemistry. NEW METHOD We used a controlled cortical impact (CCI) mouse model for traumatic brain injury (TBI), then isolated microglia/macrophages from neural cell suspensions using magnetic beads conjugated to CD11b monoclonal antibody to obtain the entire myeloid population. Polarization states of CD11b(+)CD45(lo) microglia were evaluated by expression of M1 surface marker FcγRII/III and M2 surface marker CD206. RESULTS After TBI, we observed an increase in M1:M2 ratio in the ipsilateral hemisphere when compared to the contralateral side, indicating that 24h after CCI, a shift in microglia polarization occurs localized to the hemisphere of injury. Comparison with existing method(s): The major impetus for developing and refining the methods was the need to accurately quantify microglial activation states without reliance on manual morphometric counting of serial immunohistochemistry slides. Flow cytometric analysis of enriched cell suspensions provides quantitative measurement of microglial polarization states complementary to existing methods, but for entire populations of cells. CONCLUSIONS In summary, we used immunomagnetic beads to isolate myeloid cells from injured brain, then stained surface antigens to flow cytometrically identify and categorize microglia as either classically activated M1 or alternatively activated M2, generating a ratio of M1:M2 cells which is useful in studying attempts to reduce or redirect neuroinflammation.


Experimental Neurology | 2016

Strategies for CNS repair following TBI

Benjamin M. Aertker; Supinder S. Bedi; Charles S. Cox

Traumatic brain injury (TBI) imparts a significant health burden in the United States, leaving many patients with chronic deficits. Improvement in clinical outcome following TBI has been hindered by a lack of treatments that have proven successful during phase III trials. Research remains active into a variety of non-pharmacologic, small molecule, endocrine and cell based therapies. Of particular focus in this review are the recent therapeutic avenues that have undergone clinical investigation and the mechanisms by which cell therapies may mediate recovery in severe TBI. Preclinical data show cell therapies to provide benefit when administered systemically or with transplantation to the site of injury. Increasingly, studies have shown that these cells are able to attenuate the inflammatory response to injury and stimulate production of neurotrophic factors. In animal models, beneficial effects on blood-brain barrier permeability, neuroprotection and neural repair through enhanced axonal remodeling have been observed. Clinical investigation with cell therapies for TBI remains ongoing.


Journal of Trauma-injury Infection and Critical Care | 2013

Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

Supinder S. Bedi; Peter A. Walker; Shinil K. Shah; Fernando Jimenez; Chelsea Thomas; Philippa Smith; Robert A. Hetz; Hasen Xue; Shibani Pati; Pramod K. Dash; Charles S. Cox

BACKGROUND Autologous bone marrow–derived mononuclear cells (AMNCs) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection, which leads to cognitive improvement after TBI. METHODS A controlled cortical impact (CCI) rodent TBI model was used to examine blood-brain barrier (BBB) permeability, neuronal and glial apoptosis, as well as cognitive behavior. Two groups of rats underwent CCI with AMNC treatment (CCI-autologous) or without AMNC treatment (CCI-alone), consisting of 2 million AMNC per kilogram body weight harvested from the tibia and intravenously injected 72 hours after injury. CCI-alone animals underwent sham harvests and received vehicle injections. RESULTS Ninety-six hours after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of proinflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we observed significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. CONCLUSION Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity, increasing activated microglial apoptosis and improving cognitive function.


Stem Cells Translational Medicine | 2016

Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury

Daniel J. Kota; Karthik S. Prabhakara; Alexandra J. van Brummen; Supinder S. Bedi; Hasen Xue; Bryan DiCarlo; Charles S. Cox; Scott D. Olson

More than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that β‐adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long‐term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well‐tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the β‐blocker propranolol followed by MSC treatment.


Neurogastroenterology and Motility | 2013

Effects of traumatic brain injury on intestinal contractility.

Alex Olsen; Robert A. Hetz; Hasen Xue; Kevin R. Aroom; D. Bhattarai; E. Johnson; Supinder S. Bedi; Charles S. Cox; Karen S. Uray

Patients with traumatic brain injury (TBI) often suffer from gastrointestinal dysfunction including intolerance to enteral feedings. However, it is unclear how TBI affects small intestinal contractile activity. The purpose of this study was to determine if TBI affects intestinal smooth muscle function.


Cell Transplantation | 2016

Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury.

Raymond J. Grill; Tiffany J. Dunn; Supinder S. Bedi; Javier Allende Labastida; Robert A. Hetz; Hasen Xue; Jason R. Thonhoff; Douglas S. DeWitt; Donald S. Prough; Charles S. Cox; Ping Wu

Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor β. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.


Journal of Neuroscience Research | 2017

Do microglia play a role in sex differences in TBI

Henry W. Caplan; Charles S. Cox; Supinder S. Bedi

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality for both males and females and is, thus, a major focus of current study. Although the overall death rate of TBI for males is roughly three times higher than that for females, males have been disproportionately represented in clinical and preclinical studies. Gender differences are known to exist in many neurologic disorders, such as multiple sclerosis and stroke, and differences appear to exist in TBI. Furthermore, it is known that microglia have sexually dimorphic roles in CNS development and other neurologic conditions; however, most animal studies of microglia and TBI have focused on male subjects. Microglia are a current target of many preclinical and clinical therapeutic trials for TBI. Understanding the relationship among sex, sex hormones, and microglia is critical to truly understanding the pathophysiology of TBI. However, the evidence for sex differences in TBI centers mainly on sex hormones, and evidenced‐based conclusions are often contradictory. In an attempt to review the current literature, it is apparent that sex differences likely exist, but the contradictory nature and magnitude of such differences in the existing literature does not allow definite conclusions to be drawn, except that more investigation of this issue is necessary.

Collaboration


Dive into the Supinder S. Bedi's collaboration.

Top Co-Authors

Avatar

Charles S. Cox

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Robert A. Hetz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Philippa Smith

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hasen Xue

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Scott D. Olson

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chelsea Thomas

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Alex Olsen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Aertker

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge