Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Supot Hannongbua is active.

Publication


Featured researches published by Supot Hannongbua.


Journal of Molecular Graphics & Modelling | 2011

How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system

Uthumporn Arsawang; Oraphan Saengsawang; Purinchaya Sornmee; Kitiyaporn Wittayanarakul; Tawun Remsungnen; Supot Hannongbua

Aiming at understanding the molecular properties of the encapsulation of the anticancer drug gemcitabine in the single-walled carbon nanotube (SWCNT), molecular dynamics (MD) simulations were applied to the two scenarios; that of gemcitabine filling inside the SWCNT, and that of the drug in the free state. Inside the SWCNT, the cytosine ring of gemcitabine was found to form a π-π stacking conformation with the SWCNT surface, and this movement is not along the centerline of the tube from one end to the other of the tube where the distance from the center of gravity of the molecule to the surface is 4.7 Å. A tilted angle of 19° was detected between the cytosine ring of gemcitabine and the inner surface of SWCNT. In comparison to its conformation in the free form, no significant difference was observed on the torsion angle between the five- (ribose) and the six- (cytosine) membered rings. However, gemcitabine inside the SWCNT was found to have a lower number of solvating water molecules but with a stronger net solvation than the drug in the free state. This is due to the collaborative interactions between gemcitabine and the surface of the SWCNT. In addition, the steered molecular dynamics simulation (SMD) approach was employed to investigate the binding free energy for gemcitabine moving from one end to another end throughout the SWCNT. In excellent agreement with that yielded from the classical MD, the SMD energy profile confirms that the drug molecule prefers to locate inside the SWCNT.


Biochemical and Biophysical Research Communications | 2009

Susceptibility of antiviral drugs against 2009 influenza A (H1N1) virus

Pathumwadee Intharathep; Maturos Malaisree; Nadtanet Nunthaboot; Nopphorn Kaiyawet; Pornthep Sompornpisut; Sanchai Payungporn; Yong Poovorawan; Supot Hannongbua

The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes.


Journal of Molecular Graphics & Modelling | 2008

How amantadine and rimantadine inhibit proton transport in the M2 protein channel

Pathumwadee Intharathep; Chittima Laohpongspaisan; Arthorn Loisruangsin; Maturos Malaisree; Panita Decha; Ornjira Aruksakunwong; Krit Chuenpennit; Nopphorn Kaiyawet; Pornthep Sompornpisut; Somsak Pianwanit; Supot Hannongbua

To understand how antiviral drugs inhibit the replication of influenza A virus via the M2 ion channel, molecular dynamics simulations have been applied to the six possible protonation states of the M2 ion channel in free form and its complexes with two commercial drugs in a fully hydrated lipid bilayer. Among the six different states of free M2 tetramer, water density was present in the pore of the systems with mono-protonated, di-protonated at adjacent position, tri-protonated and tetra-protonated systems. In the presence of inhibitor, water density in the channel was considerably better reduced by rimantadine than amantadine, agreed well with the experimental IC(50) values. With the preferential position and orientation of the two drugs in all states, two mechanisms of action, where the drug binds to the opening pore and the histidine gate, were clearly explained, i.e., (i) inhibitor was detected to localize slightly closer to the histidine gate and can facilitate the orientation of His37 imidazole rings to lie in the close conformation and (ii) inhibitor acts as a blocker, binding at almost above the opening pore and interacts slightly with the three pore-lining residues, Leu26, Ala30 and Ser31. Here, the inhibitors were found to bind very weakly to the channel due to their allosteric hindrance while theirs side chains were strongly solvated.


Journal of Computational Chemistry | 2008

Accurate prediction of protonation state as a prerequisite for reliable MM‐PB(GB)SA binding free energy calculations of HIV‐1 protease inhibitors

Kitiyaporn Wittayanarakul; Supot Hannongbua; Michael Feig

Binding free energies were calculated for the inhibitors lopinavir, ritonavir, saquinavir, indinavir, amprenavir, and nelfinavir bound to HIV‐1 protease. An MMPB/SA‐type analysis was applied to conformational samples from 3 ns explicit solvent molecular dynamics simulations of the enzyme‐inhibitor complexes. Binding affinities and the sampled conformations of the inhibitor and enzyme were compared between different HIV‐1 protease protonation states to find the most likely protonation state of the enzyme in the complex with each of the inhibitors. The resulting set of protonation states leads to good agreement between calculated and experimental binding affinities. Results from the MMPB/SA analysis are compared with an explicit/implicit hybrid scheme and with MMGB/SA methods. It is found that the inclusion of explicit water molecules may offer a slight advantage in reproducing absolute binding free energies while the use of the Generalized Born approximation significantly affects the accuracy of the calculated binding affinities.


Proteins | 2008

Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1.

Maturos Malaisree; Panita Decha; Pathumwadee Intharathep; Ornjira Aruksakunwong; Supot Hannongbua

To provide detailed information and insight into the drug‐target interaction, structure, solvation, and dynamic and thermodynamic properties, the three known‐neuraminidase inhibitors—oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV)—embedded in the catalytic site of neuraminidase (NA) subtype N1 were studied using molecular dynamics simulations. In terms of ligand conformation, there were major differences in the structures of the guanidinium and the bulky groups. The atoms of the guanidinium group of PRV were observed to form many more hydrogen bonds with the surrounded residues and were much less solvated by water molecules, in comparison with the other two inhibitors. Consequently, D151 lying on the 150‐loop (residues 147–152) of group‐1 neuraminidase (N1, N4, N5, and N8) was considerably shifted to form direct hydrogen bonds with the OH group of the PRV, which was located rather far from the 150‐loop. For the bulky group, direct hydrogen bonds were detected only between the hydrophilic side chain of ZNV and residues R224, E276, and E277 of N1 with rather weak binding, 20–70% occupation. This is not the case for OTV and PRV, in which flexibility and steric effects due to the hydrophobic side chain lead to the rearrangement of the surrounded residues, that is, the negatively charged side chain of E276 was shifted and rotated to form hydrogen bonds with the positively charged moiety of R224. Taking into account all the ligand‐enzyme interaction data, the gas phase MM interaction energy of −282.2 kcal/mol as well as the binding free energy (ΔGbinding) of −227.4 kcal/mol for the PRV‐N1 are significantly lower than those of the other inhibitors. The ordering of ΔGbinding of PRV < ZNV < OTV agrees well with the ordering of experimental IC50 value. Proteins 2008.


Journal of the American Chemical Society | 2010

Proton Transport through the Influenza A M2 Channel: Three-Dimensional Reference Interaction Site Model Study

Saree Phongphanphanee; Norio Yoshida; Supot Hannongbua; Fumio Hirata

The three-dimensional distribution function (DF) and the potential of mean force (PMF) of water and hydronium ions in five protonated states of the influenza A M2 channel are calculated by means of the three-dimensional reference interaction site model (3D-RISM) theory in order to clarify the proton conduction mechanism of the channel. Each protonated state, denoted as iH, where i = 0-4, has a different number of protonated histidines, from 0 to 4. The DF of water in each state exhibits closed structures of 0H, 1H, and 2H and open structures in 3H and 4H. In the closed form, the DF and PMF indicate that hydronium ions are excluded from the channel. In contrast, the ion can distribute throughout the opened channel. The barrier in PMF of 3H, approximately 3-5 kJ/mol, is lower than that of 4H, 5-7 kJ/mol, indicating that 3H has higher permeability to protons. On the basis of the radial DFs of water and hydronium ions around the imidazole rings of His37, we propose a new mechanism of proton transfer through the gating region of the channel. In this process, a hydronium ion hands a proton to a non-protonated histidine through a hydrogen bond between them, and then the other protonated histidine releases a proton to a water molecule via a hydrogen bond. The process transfers a proton effectively from one water molecule to another.


Antiviral Research | 2009

Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1

Thanyada Rungrotmongkol; Vladimir Frecer; Wanchai De-Eknamkul; Supot Hannongbua; Stanislav Miertus

Neuraminidase is an important target for design of antiviral agents in the prophylaxis and treatment of avian influenza virus infections. We have shown the applicability of computer-assisted combinatorial techniques in the design, focusing and in silico screening of a virtual library of analogs of oseltamivir (Tamiflu) with the goal to find potent inhibitors of influenza A neuraminidase N1 that fill the cavity found adjacent to the active site. Crystal structure of oseltamivir-N1 complex was used in the structure-based focusing and virtual screening of the designed library. A target-specific Piecewise Linear Potential type 1 scoring function fitted for a training set of 14 carbocyclic inhibitors and validated for three other inhibitors was used to select virtual hits with predicted inhibitory activities in the subnanomolar range. The results of this computational study are useful as a rational guide for synthetic and medicinal chemists who are developing new drugs against the avian influenza virus H5N1.


Applied Catalysis A-general | 2002

On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements

C. Bussai; S. Vasenkov; H. Liu; Winfried Böhlmann; Siegfried Fritzsche; Supot Hannongbua; R. Haberlandt; Jörg Kärger

Abstract Molecular dynamics simulations of water diffusion in silicalite-1 are reported. The simulations are carried out using an ab initio fitted silicalite-1–water potential based on quantum chemical calculations. In addition, preliminary results of pulsed field gradient (PFG) NMR diffusion measurements of water and small alkane molecules in silicalite-1 samples are presented. Pre-adsorption of water in silicalite-1 samples was found to change the intra-crystalline diffusivities of small alkane molecules in silicalite-1. This is interpreted as an indirect evidence that under our experimental conditions water molecules occupy a significant part of the silicalite-1 channel system. The preliminary results of the PFG NMR diffusion measurements of water in silicalite-1 samples are discussed in terms of the contributions of extra- and intra-crystalline water to the measured signals. An-order-of magnitude agreement between the measured and the simulated intra-crystalline diffusivities of water in silicalite-1 is obtained.


Biochemistry | 2012

Long Time Scale GPU Dynamics Reveal the Mechanism of Drug Resistance of the Dual Mutant I223R/H275Y Neuraminidase from H1N1-2009 Influenza Virus

Christopher J. Woods; Maturos Malaisree; Naruwan Pattarapongdilok; Pornthep Sompornpisut; Supot Hannongbua; Adrian J. Mulholland

Multidrug resistance of the pandemic H1N1-2009 strain of influenza has been reported due to widespread treatment using the neuraminidase (NA) inhibitors, oseltamivir (Tamiflu), and zanamivir (Relenza). From clinical data, the single I223R (IR(1)) mutant of H1N1-2009 NA reduced efficacy of oseltamivir and zanamivir by 45 and 10 times, (1) respectively. More seriously, the efficacy of these two inhibitors against the double mutant I223R/H275Y (IRHY(2)) was significantly reduced by a factor of 12 374 and 21 times, respectively, compared to the wild-type.(2) This has led to the question of why the efficacy of the NA inhibitors is reduced by the occurrence of these mutations and, specifically, why the efficacy of oseltamivir against the double mutant IRHY was significantly reduced, to the point where oseltamivir has become an ineffective treatment. In this study, 1 μs of molecular dynamics (MD) simulations was performed to answer these questions. The simulations, run using graphical processors (GPUs), were used to investigate the effect of conformational change upon binding of the NA inhibitors oseltamivir and zanamivir in the wild-type and the IR and IRHY mutant strains. These long time scale dynamics simulations demonstrated that the mechanism of resistance of IRHY to oseltamivir was due to the loss of key hydrogen bonds between the inhibitor and residues in the 150-loop. This allowed NA to transition from a closed to an open conformation. Oseltamivir binds weakly with the open conformation of NA due to poor electrostatic interactions between the inhibitor and the active site. The results suggest that the efficacy of oseltamivir is reduced significantly because of conformational changes that lead to the open form of the 150-loop. This suggests that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation, or by designing inhibitors that can form a hydrogen bond to the mutant R223 residue, thereby preventing competition between R223 and R152.


Journal of Chemical Physics | 2011

A water-swap reaction coordinate for the calculation of absolute protein–ligand binding free energies

Christopher J. Woods; Maturos Malaisree; Supot Hannongbua; Adrian J. Mulholland

The accurate prediction of absolute protein-ligand binding free energies is one of the grand challenge problems of computational science. Binding free energy measures the strength of binding between a ligand and a protein, and an algorithm that would allow its accurate prediction would be a powerful tool for rational drug design. Here we present the development of a new method that allows for the absolute binding free energy of a protein-ligand complex to be calculated from first principles, using a single simulation. Our method involves the use of a novel reaction coordinate that swaps a ligand bound to a protein with an equivalent volume of bulk water. This water-swap reaction coordinate is built using an identity constraint, which identifies a cluster of water molecules from bulk water that occupies the same volume as the ligand in the protein active site. A dual topology algorithm is then used to swap the ligand from the active site with the identified water cluster from bulk water. The free energy is then calculated using replica exchange thermodynamic integration. This returns the free energy change of simultaneously transferring the ligand to bulk water, as an equivalent volume of bulk water is transferred back to the protein active site. This, directly, is the absolute binding free energy. It should be noted that while this reaction coordinate models the binding process directly, an accurate force field and sufficient sampling are still required to allow for the binding free energy to be predicted correctly. In this paper we present the details and development of this method, and demonstrate how the potential of mean force along the water-swap coordinate can be improved by calibrating the soft-core Coulomb and Lennard-Jones parameters used for the dual topology calculation. The optimal parameters were applied to calculations of protein-ligand binding free energies of a neuraminidase inhibitor (oseltamivir), with these results compared to experiment. These results demonstrate that the water-swap coordinate provides a viable and potentially powerful new route for the prediction of protein-ligand binding free energies.

Collaboration


Dive into the Supot Hannongbua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panita Decha

Chulalongkorn University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge