Supratik Das
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Supratik Das.
Journal of Cell Biology | 2003
Victoria Foletta; Mei Ann Lim; Juliana Soosairajah; April P. Kelly; Edouard G. Stanley; Mark Shannon; Wei He; Supratik Das; Joan Massagué; Ora Bernard
Bone morphogenetic proteins (BMPs) regulate multiple cellular processes, including cell differentiation and migration. Their signals are transduced by the kinase receptors BMPR-I and BMPR-II, leading to Smad transcription factor activation via BMPR-I. LIM kinase (LIMK) 1 is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin depolymerizing factor. During a search for LIMK1-interacting proteins, we isolated clones encompassing the tail region of BMPR-II. Although the BMPR-II tail is not involved in BMP signaling via Smad proteins, mutations truncating this domain are present in patients with primary pulmonary hypertension (PPH). Further analysis revealed that the interaction between LIMK1 and BMPR-II inhibited LIMK1s ability to phosphorylate cofilin, which could then be alleviated by addition of BMP4. A BMPR-II mutant containing the smallest COOH-terminal truncation described in PPH failed to bind or inhibit LIMK1. This study identifies the first function of the BMPR-II tail domain and suggests that the deregulation of actin dynamics may contribute to the etiology of PPH.
Journal of Biological Chemistry | 1997
Supratik Das; Tapan Maiti; Kallol Das; Umadas Maitra
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40 S initiation complex (40 S·mRNA· eIF3·Met-tRNAf·eIF2·GTP) and mediates hydrolysis of the bound GTP. To characterize the molecular interactions involved in eIF5 function, we have used 32P-labeled recombinant rat eIF5 as a probe in filter overlay assay to identify eIF5-interacting proteins in crude initiation factor preparations. We observed that eIF5 specifically interacted with the β subunit of initiation factor eIF2. No other initiation factors including the γ subunit of eIF2 tested positive in this assay. Furthermore, both yeast and mammalian eIF5 bind to the β subunit of either mammalian or yeast eIF2. Binding analysis with human eIF2β deletion mutants expressed inEscherichia coli identified a 22-amino acid domain, between amino acids 68 and 89, as the primary eIF5-binding region of eIF2β. These results along with our earlier observations that (a) eIF5 neither binds nor hydrolyzes free GTP or GTP bound as Met-tRNAf·eIF2·GTP ternary complex, and (b) eIF5 forms a specific complex with eIF2 suggests that the specific interaction between eIF5 and the β subunit of eIF2 may be critical for the hydrolysis of GTP during translation initiation.
Molecular and Cellular Biology | 2000
Supratik Das; Umadas Maitra
ABSTRACT Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S–eIF3–AUG–Met-tRNAf–eIF2–GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the β subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2β interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2β-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2β but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A,E347A,E384A,E385A,E386A) showed negligible binding to eIF2β. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this ΔTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2β interaction plays an essential role in eIF5 function in eukaryotic cells.
Progress in Nucleic Acid Research and Molecular Biology | 2001
Supratik Das; Umadas Maitra
Eukaryotic translation initiation factor 5 (eIF5), a monomeric protein of about 49 kDa in mammals and 46 kDa in the yeast Saccharomyces cerevisiae, in conjunction with GTP and other initiation factors plays an essential role in initiation of protein synthesis in eukaryotic cells. Following formation of the 40S initiation complex (40S . eIF3 . mRNA . Met-tRNAf . eIF2 . GTP) at the AUG codon of an mRNA, eIF5 interacts with the 40S initiation complex to promote the hydrolysis of bound GTP. Hydrolysis of GTP causes the release of bound initiation factors from the 40S subunit, an event that is essential for the subsequent joining of the 60S ribosomal subunit to the 40S complex to form the functional 80S initiation complex. Detailed characterization of the eIF5-promoted GTP hydrolysis reaction shows that eIF5 functions as a GTPase-activating protein (GAP) in translation initiation. First, eIF5 promotes hydrolysis of GTP only when the nucleotide is bound to eIF2 in the 40S initiation complex. eIF5, by itself, does not hydrolyze either free GTP or GTP bound to the Met-tRNAf . eIF2 . GTP ternary complex in the absence of 40S ribosomal subunits. Second, as with typical GAPs, eIF5 forms a complex with eIF2, the GTP-binding protein. This interaction, which occurs between the lysine-rich N-terminal region of the beta subunit of eIF2 and the glutamic acid-rich C-terminal region of eIF5, is essential for eIF5 function both in vitro and in vivo in yeast cells. Finally, like typical GAPs, eIF5 also contains an arginine-finger motif consisting of an invariant arginine residue at its N-terminus that is also essential for its function. This invariant arginine residue is presumably involved in the stabilization of the transition state of the GTP hydrolysis reaction catalyzed by initiation factor eIF2.
PLOS Pathogens | 2009
Masha Sorin; Jennifer Cano; Supratik Das; Sheeba Mathew; Xuhong Wu; Kelvin P. Davies; Xuanling Shi; S.-W. Grace Cheng; David E. Ott; Ganjam V. Kalpana
HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A)) was utilized. Incorporation of HDAC1(H141A) decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A) decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1(H141A) occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication.
Journal of Biological Chemistry | 2011
Arunima Biswas; Shaeri Mukherjee; Supratik Das; Dennis Shields; Chi Wing Chow; Umadas Maitra
Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca2+-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca2+ leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phos-phorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.
Journal of Biological Chemistry | 2009
Supratik Das; Jennifer Cano; Ganjam V. Kalpana
INI1/hSNF5/BAF47/SMARCB1 is an HIV-1 integrase (IN)-binding protein that modulates viral replication in multiple ways. A minimal IN-binding domain of INI1, S6 (amino acids 183–294), transdominantly inhibits late events, and down-modulation of INI1 stimulates early events of HIV-1 replication. INI1 both stimulates and inhibits in vitro integration depending on IN concentration. To gain further insight into its role in HIV-1 replication, we purified and biochemically characterized INI1. We found that INI1 forms multimeric structures. Deletion analysis indicated that the Rpt1 and Rpt2 motifs form the minimal multimerization domain. We isolated mutants of INI1 that are defective for multimerization using a reverse yeast two-hybrid system. Our results revealed that INI1 residues involved in multimerization overlap with IN-binding and nuclear export domains and are required for nuclear retention and co-localization with IN. Multimerization-defective mutants are also defective for mediating the transdominant effect of INI1-S6-(183–294). Furthermore, we found that INI1 is a minor groove DNA-binding protein. Although IN binding and multimerization are required for INI1-mediated inhibition, the acceptor DNA binding property of INI1 may be required for stimulation of in vitro strand transfer activities of IN. Binding of INI1 to IN results in the formation of presumably inactive high molecular weight IN-INI1 complexes, and the multimerization-defective mutant was unable to form these complexes. These results indicate that the multimerization and IN binding properties of INI1 are necessary for its ability to both inhibit integration and influence assembly and particle production, providing insights into the mechanism of INI1-mediated effects in HIV-1 replication.
Gene | 2000
Tapan Maiti; Supratik Das; Umadas Maitra
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S ribosomal initiation complex (40S.eIF3.AUG.Met-tRNA(f).eIF2.GTP) to promote the hydrolysis of bound GTP. In Saccharomyces cerevisiae, eIF5, a protein of 45346Da, is encoded by a single-copy essential gene, TIF5. In this paper, we have isolated a temperature-sensitive S. cerevisiae strain, TMY5-1, by replacing the wild-type chromosomal copy of TIF5 with one mutagenized in vitro. The mutant yeast cells rapidly cease protein synthesis when grown under non-permissive conditions, lose polyribosomes and accumulate free 80S ribosomes. Further characterization of mutant eIF5 showed that the mutant protein, expressed in Escherichia coli, is defective both in its interaction with eIF2 as well as in mediating the hydrolysis of GTP bound to the 40S initiation complex and consequently in the formation of the 80S initiation complex. Additionally, the availability of a yeast strain containing temperature-sensitive mutation in the eIF5 gene allowed us to construct a cell-free translation system that was dependent on exogenously added eIF5 for translation of mRNAs in vitro.
Methods of Molecular Biology | 2009
Supratik Das; Ganjam V. Kalpana
HIV-1 replication involves a complex network of multiple protein-protein interactions. HIV-1 viral proteins exhibit both homomeric interactions among themselves and heteromeric interactions with other viral or cellular proteins. Identification and characterization of these protein-protein interactions have provided a wealth of information about the biology of the virus. Precise information about the residues involved in interaction is valuable in understanding the functional significance of these interactions, and can be determined relatively easily for proteins whose three-dimensional structure is known. However, the lack of three-dimensional structural information for several host proteins makes it harder to carry out detailed biochemical and functional studies. Reverse-two-hybrid system, a variation of the yeast-two-hybrid system can be used to genetically isolate mutants of a protein that are defective for specific protein-protein interactions. The strategy is to create a library of random mutations in one of the interacting partners and from among this library, screen for those that are defective for interaction using yeast two-hybrid system. In this review, we will describe a method to efficiently generate a library of random mutations and to further screen this library using the simple color scheme of using LacZ as a reporter gene. Once the mutants are isolated, they are tested in other biochemical systems and can be subjected to further functional and virological studies.
PLOS ONE | 2015
Saikat Boliar; Supratik Das; Manish Bansal; Brihaspati N. Shukla; Shilpa Patil; Tripti Shrivastava; Sweety Samal; Sandeep Goswami; C. Richter King; Jayanta Bhattacharya; Bimal K. Chakrabarti
An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.