Supreet Singh Bahga
Indian Institute of Technology Delhi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Supreet Singh Bahga.
Journal of Fluid Mechanics | 2010
Supreet Singh Bahga; Olga I. Vinogradova; Martin Z. Bazant
Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared with the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analysing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-layer thickness, we show that surface anisotropy generally leads to a tensorial electro-osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly, the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip tensor, except in special cases. Our results imply that significantly enhanced electro-osmotic flows over super-hydrophobic surfaces are possible, but only with charged liquid―gas interfaces.
Electrophoresis | 2011
Denitsa Milanova; Robert D. Chambers; Supreet Singh Bahga; Juan G. Santiago
We present an experimental study of the effect of pH, ionic strength, and concentrations of the electroosmotic flow (EOF)‐suppressing polymer polyvinylpyrrolidone (PVP) on the electrophoretic mobilities of commonly used fluorescent dyes (fluorescein, Rhodamine 6G, and Alexa Fluor 488). We performed on‐chip capillary zone electrophoresis experiments to directly quantify the effective electrophoretic mobility. We use Rhodamine B as a fluorescent neutral marker (to quantify EOF) and CCD detection. We also report relevant acid dissociation constants and analyte diffusivities based on our absolute estimate (as per Nernst–Einstein diffusion). We perform well‐controlled experiments in a pH range of 3–11 and ionic strengths ranging from 30 to 90 mM. We account for the influence of ionic strength on the electrophoretic transport of sample analytes through the Onsager and Fuoss theory extended for finite radii ions to obtain the absolute mobility of the fluorophores. Lastly, we briefly explore the effect of PVP on adsorption–desorption dynamics of all three analytes, with particular attention to cationic R6G.
Electrophoresis | 2010
Supreet Singh Bahga; Moran Bercovici; Juan G. Santiago
We present a numerical and experimental study of the effects of ionic strength on electrophoretic focusing and separations. We review the development of ionic strength models for electrophoretic mobility and chemical activity and highlight their differences in the context of electrophoretic separation and focusing simulations. We couple a fast numerical solver for electrophoretic transport with the Onsager–Fuoss model for actual ionic mobility and the extended Debye–Huckle theory for correction of ionic activity. Model predictions for fluorescein mobility as a function of ionic strength and pH compare well with data from CZE experiments. Simulation predictions of preconcentration factors in peak mode ITP also compare well with the published experimental data. We performed ITP experiments to study the effect of ionic strength on the simultaneous focusing and separation. Our comparisons of the latter data with simulation results at 10 and 250 mM ionic strength show the model is able to capture the observed qualitative differences in ITP analyte zone shape and order. Finally, we present simulations of CZE experiments where changes in the ionic strength result in significant change in selectivity and order of analyte peaks. Our simulations of ionic strength effects in capillary electrophoresis compare well with the published experimental data.
Electrophoresis | 2011
Supreet Singh Bahga; Govind V. Kaigala; Moran Bercovici; Juan G. Santiago
We present a theoretical and experimental study on increasing the sensitivity of ITP assays by varying channel cross‐section. We present a simple, unsteady, diffusion‐free model for plateau mode ITP in channels with axially varying cross‐section. Our model takes into account detailed chemical equilibrium calculations and handles arbitrary variations in channel cross‐section. We have validated our model with numerical simulations of a more comprehensive model of ITP. We show that using strongly convergent channels can lead to a large increase in sensitivity and simultaneous reduction in assay time, compared to uniform cross‐section channels. We have validated our theoretical predictions with detailed experiments by varying channel geometry and analyte concentrations. We show the effectiveness of using strongly convergent channels by demonstrating indirect fluorescence detection with a sensitivity of 100 nM. We also present simple analytical relations for dependence of zone length and assay time on geometric parameters of strongly convergent channels. Our theoretical analysis and experimental validations provide useful guidelines on optimizing chip geometry for maximum sensitivity under constraints of required assay time, chip area and power supply.
Analytical Chemistry | 2011
Supreet Singh Bahga; Robert D. Chambers; Juan G. Santiago
We present a novel technique for coupling isotachophoretic preconcentration and electrophoretic separation using bidirectional isotachophoresis (ITP). Bidirectional ITP simultaneously sets up sharp ITP interfaces between relatively high- and low-mobility cations and high- and low-mobility anions. These two interfaces can migrate toward each other and be described as ion concentration shock waves. We here demonstrate a bidirectional ITP process in which we use the interaction of these anionic and cationic ITP shock waves to trigger a transformation from ITP preconcentration to electrophoretic separation. We use anionic ITP to focus anionic sample species prior to shock interaction. The interaction of the counter-propagating anionic and cationic ITP shocks then changes the local pH (and ionic strength) of the focused analyte zones. Under this new condition, the analytes no longer focus and begin to separate electrophoretically. The method provides faster and much less dispersive transition from ITP preconcentration to electrophoretic separation compared with traditional (unidirectional) transient ITP. It eliminates the need for intermediate steps between focusing and separation, such as manual buffer exchanges. We illustrate the technique with numerical simulations of species transport equations. We have validated our simulations with experimental visualization of bidirectional ITP zones. We then show the effectiveness of the technique by coupling ITP preconcentration and high-resolution separation of a 1 kbp DNA ladder via shock interaction in bidirectional ITP.
Electrophoresis | 2012
Denitsa Milanova; Robert D. Chambers; Supreet Singh Bahga; Juan G. Santiago
We present an experimental study on the effect of polymer PVP on EOF mobility of microchannels wet etched into optical white soda lime glass, also known as Crown glass. We performed experiments to evaluate the effect of PVP concentration and pH on EOF mobility. We used on‐chip capillary zone electrophoresis and a neutral fluorescent dye as a passive marker to quantify the electroosmotic flow. We performed experiments under controlled conditions by varying pH from 5.2 and 10.3 and concentration of PVP from 0 to 2.0% w/w at constant ionic strength (30 mM). Our experiments show that PVP at concentrations of 1.0% or above very effectively suppress EOF at low pH (6.6). At high pH of 10.3, PVP has a much weaker suppressing effect on EOF and increasing its concentration above about 0.5% showed negligible effect on EOF mobility. Finally, we briefly discuss the effects of pH on using PVP as an adsorbed coating. Our experiments provide useful guidelines on choosing correct pH and concentration of PVP for effective EOF suppression in glass channels.
Electrophoresis | 2012
Supreet Singh Bahga; Moran Bercovici; Juan G. Santiago
We present a model and an associated numerical scheme to simulate complex electrokinetic processes in channels with nonuniform cross‐sectional area. We develop a quasi‐1D model based on local cross‐sectional area averaging of the equations describing unsteady, multispecies, electromigration‐diffusion transport. Our approach uses techniques of lubrication theory to approximate electrokinetic flows in channels with arbitrary variations in cross‐section; and we include chemical equilibrium calculations for weak electrolytes, Taylor–Aris type dispersion due of nonuniform bulk flow, and the effects of ionic strength on species mobility and on acid–base equilibrium constants. To solve the quasi‐1D governing equations, we provide a dissipative finite volume scheme that adds numerical dissipation at selective locations to ensure both unconditional stability and high accuracy. We couple the numerical scheme with a novel adaptive grid refinement algorithm that further improves the accuracy of simulations by minimizing numerical dissipation. We benchmark our numerical scheme with existing numerical schemes by simulating nonlinear electrokinetic problems, including ITP and electromigration dispersion in CZE. Simulation results show that our approach yields fast, stable, and high‐resolution solutions using an order of magnitude less grid points compared to the existing dissipative schemes. To highlight our models capabilities, we demonstrate simulations that predict increase in detection sensitivity of ITP in converging cross‐sectional area channels. We also show that our simulations of ITP in variable cross‐sectional area channels have very good quantitative agreement with published experimental data.
Electrophoresis | 2012
Supreet Singh Bahga; Juan G. Santiago
We present a novel method of creating concentration cascade of leading electrolyte (LE) in isotachophoresis (ITP) by using bidirectional ITP. ITP establishes ion‐concentration shock waves between high‐mobility LE and low‐mobility trailing electrolyte (TE) ions. In bidirectional ITP, we set up simultaneous shock waves between anions and cations such that these waves approach each other and interact. The shock interaction causes a sudden decrease in LE concentration ahead of the focused anions and a corresponding decrease in analyte zone concentrations. This readjustment of analyte zone concentrations is accompanied by a corresponding increase in their zone lengths, in accordance to conservation laws. The method generates in situ gradient in the LE concentration, and therefore can be achieved in a single, straight channel simply by establishing the initial electrolyte chemistry. We have developed an analytical model useful in designing the process for maximum sensitivity and estimating increase in sample zone length due to shock interaction. We also illustrate the technique and evaluate its effectiveness in increasing detection sensitivity using transient simulations of species transport equations. We validated the theoretical predictions using experimental visualizations of bidirectional ITP zones for various electrolyte chemistries. Lastly, we use our technique to demonstrate a factor of 20 increase in the sensitivity of ITP‐based detection of 2,4,6‐trichlorophenol.
Langmuir | 2016
Aditya Budaraju; Jyoti Phirani; Sasidhar Kondaraju; Supreet Singh Bahga
Axial variations in geometry and presence of viscous displaced fluid are known to alter the diffusive-dynamics of capillary imbibition of a wetting liquid. We here show that the coupled effect of axially varying capillary geometry and finite viscosity of the displaced fluid can lead to significant variations in both short and long time dynamics of imbibition. Based on a theoretical model and lattice Boltzmann simulations, we analyze capillary displacement of a viscous liquid in straight and diverging capillaries. At short times, the imbibition length scales proportionally with time as opposed to the diffusive-dynamics of imbibition of a single wetting liquid. Whereas, at long times, geometry-dependent power-law behavior occurs which qualitatively resembles single liquid imbibition. The distance at which the crossover between these two regimes occurs depends strongly on the viscosities of the imbibing and the displaced liquid. Additionally, our simulations show that the early time imbibition dynamics are also affected by the dynamic contact angle of the meniscus.
Journal of Heat Transfer-transactions of The Asme | 2018
Manjinder Singh; Sasidhar Kondaraju; Supreet Singh Bahga
We present a mathematical model for dropwise condensation (DWC) heat transfer on a surface with wettability gradient. We adapt well-established population balance model for DWC on inclined surfaces to model DWC on a surface with wettability gradient. In particular, our model takes into account the effect of wettability gradient and energy released during drop coalescence to determine the drop departure size. We validate our model with published experimental data of DWC heat flux and drop size distribution. Based on various experimental studies on drop motion, we also propose a mechanism that explains how the energy released during drop coalescence on a surface with wettability gradient and in a condensation environment aids drop motion. The mechanism correctly explains the shift of center of mass of two coalescing drops on a surface with wettability gradient toward the drop on high wetting region. Using the model, we analyze the effect of wettability gradient on the DWC heat flux. Our model predictions show that the optimal choice of wettability gradient is governed by differential variations in population density and heat transfer through a drop with change in wettability of the surface. We also demonstrate that contact angle at which there is maximum heat transfer through a drop varies with thickness of coating layer leading to change in optimal wettability gradient. [DOI: 10.1115/1.4039014]