Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suraj K. Tripathy is active.

Publication


Featured researches published by Suraj K. Tripathy.


Journal of Photochemistry and Photobiology B-biology | 2015

Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites.

Sourav Das; Sayantan Sinha; Mrutyunjay Suar; Soon-Il Yun; Amrita Mishra; Suraj K. Tripathy

Disinfection of Gram-negative bacterium Vibrio cholerae 569B in aqueous matrix by solar-photocatalysis mediated by Ag@ZnO core-shell structure nanocomposite particles was investigated. Silver nanoparticles are synthesized by the reduction of silver perchlorate followed by precipitation of zinc oxide shell and are employed in the photocatalytic disinfection of the model pathogen. Effect of photocatalyst loading and reaction temperature on the disinfection kinetics was studied. Disinfection efficiency in laboratory as well as real water samples was compared with that of pure-ZnO and TiO2 (Degussa P25). Nanocomposite system has shown optimum disinfection (≈98%) at 40-60min of sun-light exposure with a catalyst loading of 0.5mg/L of the reaction solution. The reduction of aquatic bacterial densities by photocatalytically active Ag@ZnO core-shell nanocomposite in presence of natural sun-light may have potential ex situ application in water decontamination at ambient conditions.


Analytical Chemistry | 2011

Highly selective colorimetric detection of hydrochloric acid using unlabeled gold nanoparticles and an oxidizing agent.

Suraj K. Tripathy; Ju Yeon Woo; Chang Soo Han

We report a colorimetric system for the detection of HCl in aqueous environments using unlabeled gold nanoparticle (AuNP) probes. This nonaggregation-based detection system relies on the ability of chloro species to cause rapid leaching of AuNPs in an aqueous dispersion containing a strong oxidizing agent, such as HNO(3) or H(2)O(2). The leaching process leads to remarkable damping of the surface plasmon resonance peak of the AuNP dispersion. This method works only with AuNPs of a particular size (∼30 nm diameter). It is highly selective for HCl over several common mineral acids, salts, and anions. This simple and cost-effective sensing system provides rapid and simple detection of HCl at concentrations as low as 500 ppm (far below the hazard limit) in natural water systems.


Nanotechnology | 2012

Surface-plasmon-based colorimetric detection of Cu(II) ions using label-free gold nanoparticles in aqueous thiosulfate systems.

Suraj K. Tripathy; Ju Yeon Woo; Chang Soo Han

We report colorimetric, label-free and non-aggregation-based gold nanoparticle (AuNP) probes for the highly selective detection of Cu(II) ions in aqueous environments. This detection scheme relies on the ability of Cu(II) ions to catalyze the leaching of gold at room temperature in the presence of thiosulfate species and ammonia. This simple and cost-effective probe provides rapid detection of Cu(II) ions at concentrations as low as 10 ppm. A similar detection method using AuNPs in ammonia-free thiosulfate solution is also viable at moderate reaction temperature (50 °C). The ammonia-free method also leads to marked damping and red-shifting of the surface plasmon resonance signal of the AuNP dispersion. The two methods clearly differ in the nature of the surface plasmon damping phenomenon, and their working mechanisms are plausibly explained based on the experimental investigations.


Scientific Reports | 2017

Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles

Sourav Das; Sayantan Sinha; Bhaskar Das; R. Jayabalan; Mrutyunjay Suar; Amrita Mishra; Ashok J. Tamhankar; Cecilia Stålsby Lundborg; Suraj K. Tripathy

Spread of antibiotic resistant bacteria through water, is a threat to global public health. Here, we report Fe-doped ZnO nanoparticles (Fe/ZnO NPs) based solar-photocatalytic disinfection (PCD) of multidrug resistant Escherichia coli (MDR E. coli). Fe/ZnO NPs were synthesized by chemical precipitation technique, and when used as photocatalyst for disinfection, proved to be more effective (time for complete disinfection = 90 min) than ZnO (150 min) and TiO2 (180 min). Lipid peroxidation and potassium (K+) ion leakage studies indicated compromisation of bacterial cell membrane and electron microscopy and live-dead staining confirmed the detrimental effects on membrane integrity. Investigations indicated that H2O2 was the key species involved in solar-PCD of MDR E. coli by Fe/ZnO NPs. X-ray diffraction and atomic absorption spectroscopy studies showed that the Fe/ZnO NPs system remained stable during the photocatalytic process. The Fe/ZnO NPs based solar-PCD process proved successful in the disinfection of MDR E. coli in real water samples collected from river, pond and municipal tap. The Fe/ZnO NPs catalyst made from low cost materials and with high efficacy under solar light may have potential for real world applications, to help reduce the spread of resistant bacteria.


Applied Physics Letters | 2012

Thermal and structural dependence of the band gap of quantum dots measured by a transparent film heater

Ju Yeon Woo; Suraj K. Tripathy; Kyungnam Kim; Chang Soo Han

We report the temperature dependence of the optical absorption and emission spectra of quantum dots (QDs) for three different nanocrystal (NC) structures (CdSe core, CdSe/CdS core/shell, and CdSe/CdS/ZnS core/multishell) in the solid film state. For this, a transparent single-walled carbon nanotube (SWCNT) film attached to a QD thin layer was tested as a heater. The temperature dependence of spectral shifts in both absorption and emission of QDs was measured in the range 300–450 K, and the Stokes shift was calculated by measuring the energy difference between the absorption and emission peaks. We found that the Stokes shift decreased as QD shells were added and the temperature was increased, indicating a weaker electron–phonon coupling in the QDs with additional shells at higher temperature. Finally, the band gap of the QDs was measured as a function of temperature. The Debye temperature was obtained by empirically fitting the energy band gap.


International Journal of Environmental Research and Public Health | 2017

Disinfection of the Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles

Sourav Das; Neha Ranjana; Ananyo Jyoti Misra; Mrutyunjay Suar; Amrita Mishra; Ashok J. Tamhankar; Cecilia Stålsby Lundborg; Suraj K. Tripathy

Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis mediated by sonochemically synthesized Ag@ZnO core-shell nanoparticles. The efficiency of the process increased with the increase in temperature and at 55 °C the disinfection for the two bacteria could be achieved in 45 and 60 min, respectively. A new ultrasound-assisted chemical precipitation technique was used for the synthesis of Ag@ZnO core-shell nanoparticles. The characteristics of the synthesized material were established using physical techniques. The material remained stable even at 400 °C. Disinfection efficiency of the Ag@ZnO core-shell nanoparticles was confirmed in the case of real world samples of pond, river, municipal tap water and was found to be better than that of pure ZnO and TiO2 (Degussa P25). When the nanoparticle- based catalyst was recycled and reused for subsequent disinfection experiments, its efficiency did not change remarkably, even after three cycles. The sonochemically synthesized Ag@ZnO core-shell nanoparticles thus have a good potential for application in solar photocatalytic disinfection of water borne pathogens.


Journal of Colloid and Interface Science | 2018

Doped ZnO nanoparticles impregnated on Kaolinite (Clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light

Ananyo Jyoti Misra; Sourav Das; A.P. Habeeb Rahman; Bhaskar Das; R. Jayabalan; Susanta Kumar Behera; Mrutyunjay Suar; Ashok J. Tamhankar; Amrita Mishra; Cecilia Stålsby Lundborg; Suraj K. Tripathy

Water contamination by multidrug resistant (MDR) enteric bacteria can be considered as the foremost cause of gastrointestinal infections and poses a threat to global public health. Therefore, there is an urgent need to pursue unorthodox techniques with potential of community scale applications for purging of water borne pathogenic bacteria. We communicate visible-light assisted photocatalytic disinfection (PCD) of an enteric MDR bacterium; Enterobacter sp. using Fe-doped ZnO nanoparticles impregnated on Kaolinite (Clay) (ZnO/K). ZnO/K was synthesized by co-precipitation technique and was found to be more effective than Fe-doped ZnO (ZnO) and Kaolinite for PCD process. Analysis from fluorescence microscopy and electron microscopy (FESEM) proposed complete bacterial cell death via PCD due to damage of bacterial cell membrane. Experimental evidences indicated that O2- could be acting as the most significant component in disinfection of MDR Enterobacter sp. in visible-light assisted PCD process in presence of ZnO/K. Considering the experimental data of Resazurin assay, it is proposed that reactive oxygen species (ROS) generated during PCD might have impeded the oxido-reductase enzyme system of the bacteria and hence trammeling its metabolic activity. Crystal structure and particle size of ZnO/K was found to be unaltered during the photocatalytic process indicating its potential for reusability. When ZnO/K was exposed to HCT-116 Human Colorectal Carcinoma cell lines, about 79% cell survivability was noticed. The synthesized material was successful in completely disinfecting the target microorganism in Zebra Fish model, without producing any adverse effects on the Fish itself, further reinforcing its biocompatibility factor. High effectiveness of PCD process using ZnO/K under visible light in disinfecting enteric MDR bacteria, might have promising outcome as an alternative water disinfection technology to prevent the spread of infectious and resistant bacteria without producing any adverse effect on non-specific flora and fauna.


Materials Science and Engineering: C | 2018

Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus

Bhaskar Das; Sahoo Moumita; Soumen Ghosh; Imran Khan; Dash Indira; R. Jayabalan; Suraj K. Tripathy; Amrita Mishra; P. Balasubramanian

Nanobiotechnology has become a newly evolving field of interest in biomedical applications due to its biocompatibility and non-toxic nature towards the environment. Metal and metal oxide nanoparticles have been widely used as an antibacterial agent due to the emergence of antibiotic resistant pathogens, which leads to the outbreak of infectious diseases. In the present paper, biogenic synthesis of magnesium oxide (MgO) nanoflakes is reported by using Bauhinia purpurea leaf extract through alkaline precipitation method along with its detailed characterization. The average size of synthesized nanoflakes was found to be around 11 nm. Electron microscopy was used to investigate the morphology of the MgO nanoflakes. Additionally, the presence of antioxidants, phenolics and flavonoids in B. purpurea leaf extract has been studied by using different assays, which suggested the efficacy of leaf extract as a potential reducing agent for MgO nanoflakes synthesis. Antibacterial activity of synthesized MgO nanoflakes was investigated against Staphylococcus aureus, a gram positive bacteria known to cause various infections in humans. Results suggested the high efficacy of MgO nanoflakes as a potential antibacterial agent against S. aureus at meager dose size (250 μg/ml) and possible mode of action was investigated through surface morphology analysis of bacterial cells by field emission scanning electron microscopy.


Chemical Engineering Communications | 2018

Removal of Congo Red dye from aqueous solution using Amberlite IRA-400 in batch and fixed bed reactors

S. Sinha; S. S. Behera; Sourav Das; A. Basu; R. K. Mohapatra; B. M. Murmu; N. K. Dhal; Suraj K. Tripathy; P.K. Parhi

ABSTRACT Removal of Congo Red (CR) azo dye by adsorption process using Amberlite IRA-400 resin was evaluated in both batch and fixed bed system. From the batch adsorption results, maximum loading efficiency (99.99%) of CR dye was obtained at the conditions pH 4.5, temp. 303 K, contact time 180 min., Amberlite IRA-400 dose 0.5 g. The isotherm study ascertained on favorability of adsorption process as the value of separation factor (KL = 0.88) and Freundlich constant (1/n = 0.96 < 1.0) obtained from Langmuir and Freundlich equations are rational, though, overall adsorption process showed best fit with Langmuir (R2 = 0.99) than Freundlich model (R2 = 0.97). The kinetic data studied at three different CR dye concentration (50, 75, 100 mg) and results were fitted with both pseudo-first-order and second-order model equations. The values of R2 obtained are of 0.95 and 0.99 for former and later one, respectively, ensuring on best fitting of pseudo-second-order kinetics and also suggesting about the chemisorptions type of adsorption. The bed depth service model was applied for competitive analysis of the CR dye adsorption in column variables indicating mass transfer from aqueous solution to Amberlite IRA-400 phase. Fourier transform infrared analysis of CR-loaded resin Amberlite IRA-400 showed a band shifted from 1057 to 1130 cm−1 confirming CR adsorption with Amberlite IRA-400. Scanning electron microscope analysis of resin before and after adsorption was well evident from the phase patterns. Selective separation of CR dye from waste effluent of a textile industry bearing CR dye along with other trace heavy metal was achieved.


Applied Microbiology and Biotechnology | 2011

Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells.

Amrita Mishra; Suraj K. Tripathy; Rizwan Wahab; Song-Hoon Jeong; I.H. Hwang; You-Bing Yang; Young-Soon Kim; Hyung-Shik Shin; Soon-Il Yun

Collaboration


Dive into the Suraj K. Tripathy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soon-Il Yun

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge