Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surajit Karmakar is active.

Publication


Featured researches published by Surajit Karmakar.


Neuroscience Letters | 2006

Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells.

Surajit Karmakar; Naren L. Banik; Sunil J. Patel; Swapan K. Ray

The therapeutic effect of curcumin (CCM), a polyphenolic compound from the rhizome of Curcuma longa, has not yet been examined in glioblastoma. We used human glioblastoma T98G cells to explore the efficacy of CCM for inducing apoptosis and identifying proteolytic mechanisms involved in this process. Trypan blue dye exclusion test showed decrease in cell viability with increasing dose of CCM. Wright staining and ApopTag assay showed, respectively, morphological and biochemical features of apoptosis in T98G cells exposed to 25 microM and 50 microM of CCM for 24 h. Treatment with CCM activated receptor-mediated pathway of apoptosis as Western blotting showed activation of caspase-8 and cleavage of Bid to tBid. Besides, CCM caused an increase in Bax:Bcl-2 ratio, and mitochondrial release of cytochrome c, Second mitochondrial activator of caspases/Direct IAP binding protein with low pI (Smac/Diablo), and apoptosis-inducing-factor (AIF) indicating involvement of mitochondria-mediated pathway as well. Down regulation of the nuclear factor kappa B (NFkappaB), increased expression of inhibitor of nuclear factor kappa B alpha (IkappaB alpha), and decreased expression of inhibitor-of-apoptosis proteins (IAPs) such as c-IAP1 and c-IAP2 in T98G cells following CCM treatment suggested suppression of survival signal. Activation of caspase-9 and caspase-3 was detected in generation of 35 kD and 20 kD active fragments, respectively. Calpain and caspase-3 activities cleaved 270 kD alpha-spectrin at specific sites to generate 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Our results strongly suggest that CCM induced both receptor-mediated and mitochondria-mediated proteolytic mechanisms for induction of apoptosis in T98G cells.


Cancer | 2008

Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice

Surajit Karmakar; Naren L. Banik; Swapan K. Ray

Glioblastoma, which is the most malignant brain tumor, remains incurable and almost always causes death. As a new treatment strategy, the combination of all‐trans retinoic acid (ATRA) and paclitaxel was explored for controlling the growth of glioblastoma U87MG xenografts.


RSC Advances | 2014

Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin

Siddharth Jambhrunkar; Surajit Karmakar; Amirali Popat; Meihua Yu; Chengzhong Yu

Curcumin encapsulated in mesoporous silica nanoparticles showed improved solubility, in vitro release profile and significantly enhanced cell cytotoxicity compared to the pure drug.


Neuroscience | 2006

Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate

Swapan K. Ray; Surajit Karmakar; Mark W. Nowak; Naren L. Banik

Glutamate toxicity in traumatic brain injury, ischemia, and Huntingtons disease causes cortical neuron death and dysfunction. We tested the efficacy of calpain and caspase-3 inhibitors alone and in combination to prevent neuronal death and preserve electrophysiological functions in rat primary cortical neurons following glutamate exposure. Cortical neurons exposed to 0.5 microM glutamate for 24 h committed mostly apoptotic death as determined by Wright staining and ApopTag assay. Levels of expression, formation of active forms, and activities of calpain and caspase-3 were increased following glutamate exposure. Also, in situ double labeling identified conformationally active caspase-3-p20 fragment and chromatin condensation in apoptotic neurons. Pretreatment of cortical neurons with 0.2 microM N-benzyloxylcarbonyl-Leu-Nle-aldehyde (calpain-specific inhibitor) and 100 microM N-benzyloxylcarbonyl-Asp(OCH3)-Glu(OCH3)-Val-Asp(OCH3)-fluoromethyl ketone (caspase-3-specific inhibitor) provided strong neuroprotection. Standard patch-clamp techniques were used to measure the whole-cell currents associated with Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors. The lack of a change in capacitance indicated that neurons treated with inhibitor(s) plus glutamate did not undergo apoptotic shrinkage and maintained the same size as the control neurons. Whole-cell currents associated with Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors were similar in amplitude and activation/inactivation kinetics for cells untreated and treated with inhibitor(s) and glutamate. Spontaneous synaptic activity as observed by miniature end-plate currents was also similar. Prevention of glutamate-induced apoptosis by calpain and caspase-3 inhibitors preserved normal activities of crucial ion channels such as Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors in neurons. Our studies strongly imply that calpain and caspase-3 inhibitors may also provide functional neuroprotection in the animal models of traumatic brain injury and neurodegenerative diseases.


Neuroscience Letters | 2007

5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells

Surajit Karmakar; Naren L. Banik; Sunil J. Patel; Swapan K. Ray

Glioblastoma is the most common astrocytic brain tumor in humans. Current therapies for this malignancy are mostly ineffective. Photodynamic therapy (PDT), an exciting treatment strategy based on activation of a photosensitizer, has not yet been extensively explored for treating glioblastoma. We used 5-aminolevulinic acid (5-ALA) as a photosensitizer for PDT to induce apoptosis in human malignant glioblastoma U87MG cells and to understand the underlying molecular mechanisms. Trypan blue dye exclusion test showed a decrease in cell viability after exposure to increasing doses of 5-ALA for 4h followed by PDT with a broad spectrum blue light (400-550 nm) at a dose of 18J/cm(2) for 1h and then incubation at 37 degrees C for 4h. Following 0.5 and 1mM 5-ALA-based PDT (5-ALA-PDT), Wright staining and ApopTag assay showed occurrence of apoptosis morphologically and biochemically, respectively. After 5-ALA-PDT, down regulation of nuclear factor kappa B (NFkappaB) and baculovirus inhibitor-of-apoptosis repeat containing-3 (BIRC-3) protein indicated inhibition of survival signals. Besides, 5-ALA-PDT caused increase in Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF). Activation of calpain, caspase-9, and caspase-3 occurred in course of apoptosis. Calpain and caspase-3 activities cleaved alpha-spectrin at specific sites generating 145kD spectrin breakdown product (SBDP) and 120kD SBDP, respectively. The results suggested that 5-ALA-PDT induced apoptosis in U87MG cells by suppression of survival signals and activation of proteolytic pathways. Thus, 5-ALA-PDT can be an effective strategy for inducing apoptosis in glioblastoma.


Colloids and Surfaces B: Biointerfaces | 2014

Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity

Amirali Popat; Surajit Karmakar; Siddharth Jambhrunkar; Chun Xu; Chengzhong Yu

Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery.


Molecular Pharmaceutics | 2014

Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity.

Siddharth Jambhrunkar; Zhi Qu; Amirali Popat; Jie Yang; Owen Noonan; Luiz Acauan; Yusilawati Ahmad Nor; Chengzhong Yu; Surajit Karmakar

Mesoporous silica nanoparticles (MCM-41) with different surface chemistry were used as carrier system to study its influence on drug delivery and anticancer activity of curcumin (CUR). CUR was encapsulated in pristine MCM-41 (hydrophilic and negatively charged), amino functionalized MCM-41 (MCM-41-NH2 which is hydrophilic and positively charged), and methyl functionalized MCM-41 (MCM-41-CH3 which is hydrophobic and negatively charged) and evaluated for in vitro release and cell cytotoxicity in human squamous cell carcinoma cell line (SCC25). Various techniques were employed to evaluate the performance of these materials on cellular uptake and anticancer activity in the SCC25 cell line. Both positively and negatively charged surfaces demonstrated enhanced drug release and anticancer activity compared to pure CUR. Positively charged nanoparticles showed higher cell uptake compared to negatively charged nanoparticles owing to its electrostatic interaction with cells. However, hydrophobic surface modified nanoparticles (MCM-41-CH3) showed no improvement in drug release and anticancer activity due to its poor wetting effect. Cell cycle analysis and cell apoptosis studies revealed different pathway mechanisms followed by the positively and negatively charged nanoparticles but exhibiting similar anticancer activity in SCC25 cells.


Small | 2014

Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins

Jun Zhang; Surajit Karmakar; Meihua Yu; Neena Mitter; Jin Zou; Chengzhong Yu

A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules.


Investigational New Drugs | 2010

Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification

Subhasree Roy Choudhury; Surajit Karmakar; Naren L. Banik; Swapan K. Ray

SummaryNeuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification.


Journal of Colloid and Interface Science | 2014

Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles.

Siddharth Jambhrunkar; Zhi Qu; Amirali Popat; Surajit Karmakar; Chun Xu; Chengzhong Yu

Mesoporous silica nanoparticles (MCM-41) were used as a carrier system to study the influence of surface charge and hydrophobicity on solubility and in-vitro drug release behavior of Griseofulvin, a potent antifungal drug with low water solubility. Bare MCM-41 with a pure silica composition, MCM-41 after amino functionalization (MCM-41-NH2) and methyl functionalization (MCM-41-CH3) were used in this study followed by encapsulation of griseofulvin. Various characterization techniques have been employed to confirm the successful drug loading inside the nanopores. The surface functionalization on MCM-41 is found to have significant effect on griseofulvins in vitro release and solubility. Both negatively and positively charged surface showed enhancement in solubility and drug release of griseofulvin. However, the hydrophobic modification led to a retarded drug release, which is caused by the poor wetting effect in the case of MCM-41-CH3 nanoparticles.

Collaboration


Dive into the Surajit Karmakar's collaboration.

Top Co-Authors

Avatar

Naren L. Banik

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Swapan K. Ray

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengzhong Yu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Meihua Yu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Sunil J. Patel

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Amirali Popat

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Xu

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge