Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surapong Chatpun is active.

Publication


Featured researches published by Surapong Chatpun.


Asian Journal of Transfusion Science | 2010

Effects of plasma viscosity modulation on cardiac function during moderate hemodilution.

Surapong Chatpun; Pedro Cabrales

Background Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs). Dextran 2000 kDa (Dx2M, 6.3 cP) and dextran 70 kDa (Dx70, 3.0 cP) were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP) was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.


Biorheology | 2010

Cardiac mechanoenergetic cost of elevated plasma viscosity after moderate hemodilution.

Surapong Chatpun; Pedro Cabrales

The purpose of this study was to investigate how plasma viscosity affects cardiac and vascular function during moderate hemodilution. Twelve anesthetized hamsters were hemodiluted by 40% of blood volume with two different viscosity plasma expanders. Experimental groups were based on the plasma expander viscosity, namely: high viscosity plasma expander (HVPE, 6.3 mPa · s) and low viscosity plasma expander (LVPE, 2.2 mPa · s). Left ventricular (LV) function was intracardiacally measured with a high temporal resolution miniaturized conductance catheter and concurrent pressure-volume results were used to calculate different LV indices. Independently of the plasma expander, hemodilution decreased hematocrit to 28% in both groups. LVPE hemodilution reduced whole blood viscosity by 40% without changing plasma viscosity, while HVPE hemodilution reduced whole blood viscosity by 23% and almost doubled plasma viscosity relative to baseline. High viscosity plasma expander hemodilution significantly increased cardiac output, stroke volume and stroke work compared to baseline, whereas LVPE hemodilution did not. Furthermore, an increase in plasma viscosity during moderate hemodilution produced a higher energy transfer per unit volume of ejected blood. Systemic vascular resistance decreased after hemodilution in both groups. Counter-intuitively, HVPE hemodilution showed lower vascular resistance and vascular hindrance than LVPE hemodilution. This result suggests that geometrical changes in the circulatory system are induced by the increase in plasma viscosity. In conclusion, an increase in plasma viscosity after moderate hemodilution directly influenced cardiac and vascular function by maintaining hydraulic power and reducing systemic vascular resistance through vasodilation.


Journal of Trauma-injury Infection and Critical Care | 2011

CARDIAC SYSTOLIC FUNCTION RECOVERY AFTER HEMORRHAGE DETERMINES SURVIVABILITY DURING SHOCK

Surapong Chatpun; Pedro Cabrales

BACKGROUND Small animal model has not been available to study cardiac pathophysiology during hemorrhagic shock. The main purpose of this study, therefore, was to establish earlier differences in left ventricle functional disturbances during hypovolemia comparable in survival and nonsurvival animals. Ventricular pressure-volume relationships have become well established as the most rigorous and comprehensive venue to assess intact heart function. METHODS Studies were performed in anesthetized hamsters subjected to a 40% of blood volume hemorrhage to induce the hypovolemic shock. A miniaturized conductance catheter was used to measure left ventricular pressure and volume. Derived from the pressure-volume measurements, cardiac performance was evaluated using systolic and diastolic function indices. RESULTS Thirteen animals were included; all animals survived the hemorrhage. Survival rate after 30 minutes of hypovolemic shock was 61.5%. End-systolic pressure was improved at the late stage of shock in the survival group, whereas no change of this index was found in the nonsurvival group. No significant differences in end-diastolic pressure and relaxation time constant were found between the nonsurvival and the survival groups. Fifteen minutes after the hemorrhage, the stroke work per stroke volume ratio significantly improved in the survival compared with nonsurvival, which also restored blood pressure. CONCLUSION The unique advantage of the pressure-volume methodology over all other available approaches to measure cardiac function is that it enables more specific measurement of the left ventricle performance independently from loading conditions and heart rate. Our findings demonstrated that failure to recover cardiac systolic function after hemorrhage, is a major determinant of mortality during hypovolemic shock.


Neuroscience Research | 2015

Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb.

Dania Cheaha; Sara Bumrungsri; Surapong Chatpun; Ekkasit Kumarnsit

Valproic acid (VPA) mouse model of autism spectrum disorder (ASD) has been characterized mostly by impaired ultrasonic vocalization, poor sociability and increased repetitive self-grooming behavior. However, its neural signaling remained unknown. This study investigated the local field potentials (LFPs) in the dorsal hippocampal CA1 and the olfactory bulb while animals exploring a novel open field. VPA was administered at gestational day 13. The results demonstrated three core features of ASD in male offspring. However, there was no difference in Y-maze performance and locomotor activity. Analysis of hippocampal LFP power revealed significantly increased slow wave (1-4 Hz) and high gamma (80-140 Hz) oscillations and decreased theta (4-12 Hz) activity in VPA mice. In the olfactory bulb, VPA animals showed greater slow wave (1-4 Hz) and beta (25-40 Hz) activity and lower activity of low gamma (55-80 Hz) wave. Regression analysis revealed positive correlations between hippocampal theta power and locomotor speed for both control and VPA-exposed mice. There was no significant difference between groups for modulation index of theta (4-12 Hz) phase modulated gamma (30-200 Hz) amplitude. These findings characterized VPA mouse model with LFP oscillations that might provide better understanding of neural processing in ASD.


American Journal of Emergency Medicine | 2013

Improving cardiac function with new-generation plasma volume expanders

Surapong Chatpun; Parimala Nacharaju; Pedro Cabrales

BACKGROUND Plasma expander (PE) based on polyethylene glycol (PEG) conjugated to albumin has shown positive results maintaining blood volume during hemodilution and restoring blood volume during resuscitation from hemorrhagic shock. Polyethylene glycol conjugation to human serum albumin (HSA), PEG-HSA, increases size, weight, and colloidal osmotic pressure, with minor effects on solution viscosity. METHODS This study was designed to test the hypothesis that PEG-HSA (2 g/dL) produced by direct PEGylation chemistry improves cardiac function during 2 experimental models, (i) moderate hemodilution and (ii) resuscitation from hemorrhagic shock, compared with a conventional colloidal PE (Dextran 70 kd [Dx70], 6 g/dL). Cardiac function was studied using a miniaturized pressure volume conductance catheter implanted in the left ventricle and evaluated in terms of cardiac indices derived from the pressure volume measurements. RESULTS Polyethylene glycol-HSA increased cardiac output, stroke volume, and stroke work and decreased systemic vascular resistance compared with Dx70 in both experimental models. The improvements induced by PEG-HSA in cardiac function were sustained over the observation time. Polyethylene glycol-HSA cardiac mechanoenergetics changes are the result of increased energy transferred per stroke and decreased resistance of the vasculature connecting the heart. In summary, PEG-HSA decreased left ventricle ejection impedance. CONCLUSION Ejection of blood diluted with PEG-HSA presented a reduced load to the heart, increased contractile function, and lowered the energy consumed per unit volume compared with Dx70. Our results emphasize the importance of heart function as a parameter to be included in the evaluation changes induced by new PEs.


Life Sciences | 2012

Exogenous intravascular nitric oxide enhances ventricular function after hemodilution with plasma expander

Surapong Chatpun; Pedro Cabrales

AIMS This study evaluated the hypothesis that exogenous nitric oxide (NO) supplementation during acute hemodilution with plasma expander (PE) provides beneficial effects on cardiac function. MAIN METHODS Acute hemodilution in golden Syrian hamsters was induced by a 40% of blood volume exchange with dextran 70 kDa. Intravascular NO supplementation after hemodilution was accomplished with a NO donor, diethylenetriamine NONOate (DETA NONOate). The test group was treated with DETA NONOate, while the control group received only vehicle. Left ventricular cardiac function was studied using pressure-volume measurements obtained with a miniaturized conductance catheter. KEY FINDINGS Cardiac output increased to 122±5% and 107±1% of the baseline in the group treated with NO donor and the vehicle group, respectively. Stroke work per stroke volume (SW/SV) after hemodilution reduced to 90% of the baseline and the NO donor significantly reduced SW/SV compared to the vehicle. The minimum rate of pressure change (dP/dt(min)) was significantly lower in animals treated with the NO donor compared to vehicle treated animals. Systemic vascular resistance (SVR) decreased to 62±5% of the baseline in the NO donor group whereas the vehicle group SVR decreased to 83±5% of the baseline. Using intravital microscopy analysis of microvessel in the dorsal skinfold window chamber, we established that the NO donor group induced significant vasodilation compared to the vehicle group. SIGNIFICANCE NO supplementation in an acute hemodilution with PE has beneficial effects on cardiac performance. However, the NO supplementation effects with a NO donor are dose-independent and short-lasting.


Journal of Biomedical Materials Research Part B | 2016

Physicochemical properties and responses in microcirculation of native tapioca starch-based plasma expander

Surapong Chatpun; Jirut Meesane; Pairaya Rujirojindakul

Plasma expanders (PEs) such as hydroxyethyl strach are widely used for volume replacement. The plantation and production of tapioca in Thailand is abundant which may provide a new source for PEs starch with novel properties. This work investigated the properties and circulatory effects of native tapioca starch-based PE (TPE). Various formulations of mixture between native tapioca starch and 0.9% sodium chloride solution were prepared and characterized in order to obtain the proper physicochemical and rheological properties. About 1% concentration by weight per volume of TPE was compared with 6% hydroxyethyl starch 130/0.4 in 0.9% sodium chloride (HES130/0.4) using an acute hemodilution by 40% of blood volume in an animal protocol. TPE had higher turbidity and viscosity but lower colloid osmotic pressure compared with HES 130/0.4. The in vivo study demonstrated that Golden Syrian hamsters hemodiluted with TPE maintained a mean arterial blood pressure and no significant difference compared to HES 130/0.4. The arterial vasodilation and functional capillary density in the animals hemodiluted with TPE had higher values than in the animals hemodiluted with HES 130/0.4. Although the in vivo study reported positive results using this native tapioca starch-based PE, the product needs work to improve some of its physiochemical properties.


Foot & Ankle International | 2017

Effectiveness of Total Contact Orthosis for Plantar Pressure Redistribution in Neuropathic Diabetic Patients During Different Walking Activities

Muhammad Nouman; Wipawan Leelasamran; Surapong Chatpun

Background: Using a total contact orthosis (TCO) is an effective method to offload in diabetic patients with foot neuropathy. However, the redistribution of peak plantar pressure is mostly observed during level walking, which may differ from other walking activities. The aim of this study was to investigate the plantar pressure from 4 regions of the foot during different walking activities (level walking, ramp ascending, ramp descending, stair ascending, and stair descending) in neuropathic diabetic patients with and without a TCO. Methods: Sixteen neuropathic diabetic patients aged 40 to 60 years with calluses and hallux valgus were included in this study and were provided with TCOs made up of multifoam, Plastazote, and microcellular rubber. The plantar pressure and contact area with the TCO and without the TCO were recorded using the Pedar X system during different walking activities. Results: A significant reduction of plantar pressure during different walking activities at the toes and forefoot regions was observed while walking with the TCO compared with walking without the TCO (control condition). Plantar pressure increased at the midfoot region when walking with the TCO, and no significant difference was observed at the hindfoot region between the control and TCO conditions. Furthermore, maximum contact area was observed during level walking with the TCO compared with other walking activities. Conclusion: The TCO significantly reduced and redistributed the peak plantar pressure from the sites where the ulceration rate is higher at the toes and forefoot compared with the other regions of the foot. Level of evidence: Therapeutic level II, lesser quality randomized controlled trial


Walailak Journal of Science and Technology (WJST) | 2014

Imbalanced Gait Characteristics Based on Plantar Pressure Assessment in Patients with Hemiplegia

Suwaporn Sanghan; Wipawan Leelasamran; Surapong Chatpun

This study aimed to assess the plantar pressure and the gait characteristics in patients with hemiplegia compared with normal subjects. Plantar pressure was measured and evaluated by the Pedar-x system ® . Twenty healthy Thai volunteers and 10 Thai patients with hemiplegia were recruited for this study. Patients with hemiplegia had significant differences in gait pattern and plantar pressure distribution compared with normal subjects. The percentages of the plantar pressure difference were 5 ± 3 and 30 ± 12 % in the normal group and the hemiplegic group, respectively. The time interval during single limb support on the affected side was 11 % shorter than the unaffected side while there was no difference of the time interval during single limb support in normal subjects. The pattern and area under the curve of normalized force-time relationship in patients with hemiplegia were particularly distinguishable from normal subjects. The progression lines of both feet were asymmetric in patients with hemiplegia but they were particularly symmetric in normal subjects. The gait characteristics derived from plantar pressure in patients with hemiplegia are apparently imbalanced and clearly different from that in normal subjects in both qualitative and quantitative aspects. doi: 10.14456/WJST.2015.69


Korean Circulation Journal | 2014

Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander.

Surapong Chatpun; Pedro Cabrales

Background and Objectives Increased vascular wall shear stress by elevated plasma viscosity significantly enhances the endothelial nitric oxide synthase (eNOS) activity during an acute isovolemic hemodilution. Also the modulation of plasma viscosity has effects on the cardiac function that were revealed if a left ventricular (LV) pressure-volume (PV) measurement was used. The aim of this study was to assess cardiac function responses to nitric oxide synthase (NOS) inhibitors with the presence of an elevated plasma viscosity but a low hematocrit level. Furthermore, systemic parameters were monitored in a murine model. Materials and Methods As test group five anesthetized hamsters were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, whereas five other hamsters were used as control group without L-NAME infusion. The dosage of L-NAME was 10 mg/kg. An isovolemic hemodilution was performed by 40% of estimated blood volume with 6% w/v dextran 2000 kDa, high viscosity plasma expanders (PEs) with viscosity 6.34 cP. LV function was measured and assessed using a 1.4 Fr PV conductance catheter. Results The study results demonstrated that NOS inhibition prevented the normal cardiac adaptive response after hemodilution. The endsystolic pressure increased 14% after L-NAME infusion and maintained higher than at the baseline after hemodilution, whereas it gradually decreased in the animals without L-NAME infusion. The admission of L-NAME significantly decreased the maximum rate of ventricular pressure rise (+dP/dtmax), stroke volume and cardiac output after hemodilution if compared to the control group (p<0.05). Conclusion This finding supports the presumption that nitric oxide induced by an increased plasma viscosity with the use of a high viscosity PE plays a major role in the cardiac function during an acute isovolemic hemodilution.

Collaboration


Dive into the Surapong Chatpun's collaboration.

Top Co-Authors

Avatar

Pedro Cabrales

University of California

View shared research outputs
Top Co-Authors

Avatar

Wipawan Leelasamran

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arpapan Prakobkarn

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Dania Cheaha

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Ekkasit Kumarnsit

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natee Ina

Prince of Songkla University

View shared research outputs
Researchain Logo
Decentralizing Knowledge