Suren Felekyan
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suren Felekyan.
Nature Structural & Molecular Biology | 2004
Manuel Diez; Boris Zimmermann; Michael Börsch; Marcelle König; Enno Schweinberger; Stefan Steigmiller; Rolf Reuter; Suren Felekyan; Volodymyr Kudryavtsev; Claus A.M. Seidel; Peter Gräber
Synthesis of ATP from ADP and phosphate, catalyzed by F0F1-ATP synthases, is the most abundant physiological reaction in almost any cell. F0F1-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F0F1-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The γ subunit rotates stepwise during proton transport–powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Martin Margittai; Jerker Widengren; Enno Schweinberger; Gunnar F. Schröder; Suren Felekyan; E. Haustein; Marcelle König; Dirk Fasshauer; Helmut Grubmüller; Reinhard Jahn; Claus A.M. Seidel
Protein conformational transitions form the molecular basis of many cellular processes, such as signal transduction and membrane traffic. However, in many cases, little is known about their structural dynamics. Here we have used dynamic single-molecule fluorescence to study at high time resolution, conformational transitions of syntaxin 1, a soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein essential for exocytotic membrane fusion. Sets of syntaxin double mutants were randomly labeled with a mix of donor and acceptor dye and their fluorescence resonance energy transfer was measured. For each set, all fluorescence information was recorded simultaneously with high time resolution, providing detailed information on distances and dynamics that were used to create structural models. We found that free syntaxin switches between an inactive closed and an active open configuration with a relaxation time of 0.8 ms, explaining why regulatory proteins are needed to arrest the protein in one conformational state.
Current Biology | 2013
Yvonne Stahl; Stephanie Grabowski; Andrea Bleckmann; Ralf Kühnemuth; Stefanie Weidtkamp-Peters; Karine Gustavo Pinto; Gwendolyn K. Kirschner; Julia B. Schmid; Rene H. Wink; Adrian Hülsewede; Suren Felekyan; Claus A.M. Seidel; Rüdiger Simon
BACKGROUND The root system of higher plants originates from the activity of a root meristem, which comprises a group of highly specialized and long-lasting stem cells. Their maintenance and number is controlled by the quiescent center (QC) cells and by feedback signaling from differentiated cells. Root meristems may have evolved from structurally distinct shoot meristems; however, no common player acting in stemness control has been found so far. RESULTS We show that CLAVATA1 (CLV1), a key receptor kinase in shoot stemness maintenance, performs a similar but distinct role in root meristems. We report that CLV1 is signaling, activated by the peptide ligand CLAVATA3/EMBRYO SURROUNDING REGION40 (CLE40), together with the receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) to restrict root stemness. Both CLV1 and ACR4 overlap in their expression domains in the distal root meristem and localize to the plasma membrane (PM) and plasmodesmata (PDs), where ACR4 preferentially accumulates. Using multiparameter fluorescence image spectroscopy (MFIS), we show that CLV1 and ACR4 can form homo- and heteromeric complexes that differ in their composition depending on their subcellular localization. CONCLUSIONS We hypothesize that these homo- and heteromeric complexes may differentially regulate distal root meristem maintenance. We conclude that essential components of the ancestral shoot stemness regulatory system also act in the root and that the specific interaction of CLV1 with ACR4 serves to moderate and control stemness homeostasis in the root meristem. The structural differences between these two meristem types may have necessitated this recruitment of ACR4 for signaling by CLV1.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Paul J. Rothwell; Sylvia Berger; Oliver Kensch; Suren Felekyan; Matthew Antonik; Birgitta M. Wöhrl; Tobias Restle; Roger S. Goody; Claus A.M. Seidel
By using single-molecule multiparameter fluorescence detection, fluorescence resonance energy transfer experiments, and newly developed data analysis methods, this study demonstrates directly the existence of three structurally distinct forms of reverse transcriptase (RT):nucleic acid complexes in solution. Single-molecule multiparameter fluorescence detection also provides first information on the structure of a complex not observed by x-ray crystallography. This species did not incorporate nucleotides and is structurally distinct from the other two observed species. We determined that the nucleic acid substrate is bound at a site far removed from the nucleic acid-binding tract observed by crystallography. In contrast, the other two states are identified as being similar to the x-ray crystal structure and represent distinct enzymatically productive stages in DNA polymerization. These species differ by only a 5-Å shift in the position of the nucleic acid. Addition of nucleoside triphosphate or of inorganic pyrophosphate allowed us to assign them as the educt and product state in the polymerization reaction cycle; i.e., the educt state is a complex in which the nucleic acid is positioned to allow nucleotide incorporation. The second RT:nucleic acid complex is the product state, which is formed immediately after nucleotide incorporation, but before RT translates to the next nucleotide.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Alexander Gansen; Alessandro Valeri; Florian Hauger; Suren Felekyan; Stanislav Kalinin; Katalin Tóth; Jörg Langowski; Claus A.M. Seidel
The nucleosome has a central role in the compaction of genomic DNA and the control of DNA accessibility for transcription and replication. To help understanding the mechanism of nucleosome opening and closing in these processes, we studied the disassembly of mononucleosomes by quantitative single-molecule FRET with high spatial resolution, using the SELEX-generated “Widom 601” positioning sequence labeled with donor and acceptor fluorophores. Reversible dissociation was induced by increasing NaCl concentration. At least 3 species with different FRET were identified and assigned to structures: (i) the most stable high-FRET species corresponding to the intact nucleosome, (ii) a less stable mid-FRET species that we attribute to a first intermediate with a partially unwrapped DNA and less histones, and (iii) a low-FRET species characterized by a very broad FRET distribution, representing highly unwrapped structures and free DNA formed at the expense of the other 2 species. Selective FCS analysis indicates that even in the low-FRET state, some histones are still bound to the DNA. The interdye distance of 54.0 Å measured for the high-FRET species corresponds to a compact conformation close to the known crystallographic structure. The coexistence and interconversion of these species is first demonstrated under non-invasive conditions. A geometric model of the DNA unwinding predicts the presence of the observed FRET species. The different structures of these species in the disassembly pathway map the energy landscape indicating major barriers for 10-bp and minor ones for 5-bp DNA unwinding steps.
Journal of Physical Chemistry B | 2010
Stanislav Kalinin; Alessandro Valeri; Matthew Antonik; Suren Felekyan; Claus A.M. Seidel
Two complementary methods in confocal single-molecule fluorescence spectroscopy are presented to analyze conformational dynamics by Forster resonance energy transfer (FRET) measurements considering simulated and experimental data. First, an extension of photon distribution analysis (PDA) is applied to characterize conformational exchange between two or more states via global analysis of the shape of FRET peaks for different time bins. PDA accurately predicts the shape of FRET efficiency histograms in the presence of FRET fluctuations, taking into account shot noise and background contributions. Dynamic-PDA quantitatively recovers FRET efficiencies of the interconverting states and relaxation times of dynamics on the time scale of the diffusion time t(d) (typically milliseconds), with a dynamic range of the method of about +/-1 order of magnitude with respect to t(d). Correction procedures are proposed to consider the factors limiting the accuracy of dynamic-PDA, such as brightness variations, shortening of the observation time due to diffusion, and a contribution of multimolecular events. Second, an analysis procedure for multiparameter fluorescence detection is presented, where intensity-derived FRET efficiency is correlated with the fluorescence lifetime of the donor quenched by FRET. If a maximum likelihood estimator is applied to compute a mean fluorescence lifetime of mixed states, one obtains a fluorescence weighted mean lifetime. Thus a mixed state is detected by a characteristic shift of the fluorescence lifetime, which becomes longer than that expected for a single species with the same intensity-derived FRET efficiency. Analysis tools for direct visual inspection of two-dimensional diagrams of FRET efficiency versus donor lifetime are presented for the cases of static and dynamic FRET. Finally these new techniques are compared with fluorescence correlation spectroscopy.
Journal of Physical Chemistry B | 2010
Stanislav Kalinin; Evangelos Sisamakis; Steven W. Magennis; Suren Felekyan; Claus A.M. Seidel
Single-molecule FRET experiments on freely diffusing rigid molecules frequently show FRET efficiency (E) distributions broader than those defined by photon statistics. It is often unclear whether the observed extra broadening can be attributed to a physical donor-acceptor distance (R(DA)) distribution. Using double-stranded DNA (dsDNA) labeled with Alexa488 and Cy5 (or Alexa647) as a test system, we investigate various possible contributions to the E distribution width. On the basis of simultaneous analysis of donor and acceptor intensities and donor lifetimes, we conclude that dsDNA chain dynamics can be ruled out as a possible reason for the observed E distribution broadening. We applied a set of tools to demonstrate that complex acceptor dye photophysics can represent a major contribution to the E distribution width. Quantitative analysis of the correlation between FRET efficiency and donor fluorescence lifetime in 2D multiparameter histograms allows one to distinguish between broadening due to distinct FRET or dye species. Moreover, we derived a simple theory, which predicts that the apparent distance width due to acceptor fluorescence quantum yield variations increases linearly with physical donor-acceptor distance. This theory nicely explains the experimentally observed FRET broadening of a series of freely diffusing labeled dsDNA and dsRNA molecules. Accounting for multiple acceptor states allowed the fitting of experimental E distributions, assuming a single fixed donor-acceptor distance.
Photochemical and Photobiological Sciences | 2009
Stefanie Weidtkamp-Peters; Suren Felekyan; Andrea Bleckmann; Rüdiger Simon; Wolfgang Becker; Ralf Kühnemuth; Claus A.M. Seidel
Multiparameter Fluorescence Image Spectroscopy (MFIS) is used to monitor simultaneously a variety of fluorescence parameters in confocal fluorescence microscopy. As the photons are registered one by one, MFIS allows for fully parallel recording of Fluorescence Correlation/Cross Correlation Spectroscopy (FCS/FCCS), fluorescence lifetime and pixel/image information over time periods of hours with picosecond accuracy. The analysis of the pixel fluorescence information in higher-dimensional histograms maximizes the selectivity of fluorescence microscopic methods. Moreover it facilitates a statistically-relevant data analysis of the pixel information which makes an efficient detection of heterogeneities possible. The reliability of MFIS has been demonstrated for molecular interaction studies in different complex environments: (I) detecting the heterogeneity of diffusion properties of the dye Rhodamine 110 in a sepharose bead, (II) Förster Resonance Energy Transfer (FRET) studies in mammalian HEK293 cells, and (III) FRET study of the homodimerisation of the transcription factor BIM1 in plant cells. The multidimensional analysis of correlated changes of several parameters measured by FRET, FCS, fluorescence lifetime and anisotropy increases the robustness of the analysis significantly. The economic use of photon information allows one to keep the expression levels of fluorescent protein-fusion proteins as low as possible (down to the single-molecule level).
Journal of Physical Chemistry B | 2008
Stanislav Kalinin; Suren Felekyan; Alessandro Valeri; Claus A.M. Seidel
Probability distribution analysis (PDA) [M. Antonik et al., J. Phys. Chem. B 2006, 110, 6970] allows one to quantitatively analyze single-molecule (SM) data obtained in Forster resonance energy transfer (FRET) or fluorescence polarization experiments. By taking explicitly background and shot noise contributions into account, PDA accurately predicts the shape of one-dimensional histograms of various parameters, such as FRET efficiency or fluorescence anisotropy. In order to describe complex experimental SM-FRET or polarization data obtained for systems consisting of multiple non-interconverting fluorescent states, several extensions to the PDA theory are presented. Effects of brightness variations and multiple-molecule events are considered independently of the detection volume parameters by using only the overall experimental signal intensity distribution. The extended PDA theory can now be applied to analyze any mixture, by using any a priori model or a model-free deconvolution approach based on the maximum entropy method (MEM). The accuracy of the analysis and the number of free parameters are limited only by data quality. Correction of the PDA model function for the presence of multiple-molecule events allows one to measure at high SM concentrations to avoid artifacts due to a very long measurement time. Tools such as MEM and combined mean donor fluorescence lifetime analysis have been developed to distinguish whether extra broadening of PDA histograms could be attributed to structural heterogeneities or dye artifacts. In this way, an ultimate resolution in FRET experiments in the range of a few Angstrom is achieved which allows for molecular Angstrom optics distinguishing between a set of fixed distances and a distribution of distances. The extended theory is verified by analyzing simulations and experimental data.
Science Signaling | 2015
Qijun Ma; Stefanie Weidtkamp-Peters; Yvonne Stahl; Suren Felekyan; Andrea Bleckmann; Claus A.M. Seidel; Rüdiger Simon
In plants, the flagellin and CLAVATA3 signaling pathways act through induced and preassembled receptor complexes, respectively. Monitoring receptor dynamics Plants use structurally related receptor complexes to respond to pathogens and growth signals, for example, using the flagellin (flg) and CLAVATA (CLV) receptors, respectively. Somssich et al. used multiparameter fluorescence imaging spectroscopy (MFIS) to assess the distribution of the receptor proteins and complexes at the membrane and the effect of their respective ligands. MFIS revealed that, before the presence of the bacterial peptide flg22, the receptors were kept apart and that the addition of flg22 triggered first receptor dimerization and then oligomerization of the dimeric complexes. In contrast, the receptors for the meristem-regulating peptide CLV3 existed as complexes before the presence of the ligand, and CLV3 induced their aggregation into membrane subdomains. This study demonstrates the usefulness of MFIS for analyzing receptor dynamics in living plant cells and reveals distinct characteristics of pathogen-sensing and growth-regulating pathways mediated by related receptor complexes. The CLAVATA (CLV) and flagellin (flg) signaling pathways act through peptide ligands and closely related plasma membrane–localized receptor-like kinases (RLKs). The plant peptide CLV3 regulates stem cell homeostasis, whereas the bacterial flg22 peptide elicits defense responses. We applied multiparameter fluorescence imaging spectroscopy (MFIS) to characterize the dynamics of RLK complexes in the presence of ligand in living plant cells expressing receptor proteins fused to fluorescent proteins. We found that the CLV and flg pathways represent two different principles of signal transduction: flg22 first triggered RLK heterodimerization and later assembly into larger complexes through homomerization. In contrast, CLV receptor complexes were preformed, and ligand binding stimulated their clustering. This different behavior likely reflects the nature of these signaling pathways. Pathogen-triggered flg signaling impedes plant growth and development; therefore, receptor complexes are formed only in the presence of ligand. In contrast, CLV3-dependent stem cell homeostasis continuously requires active signaling, and preformation of receptor complexes may facilitate this task.