Surendra Parmar
Public health laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Surendra Parmar.
Genome Research | 2013
Helena M. B. Seth-Smith; Simon R. Harris; Rachel J. Skilton; Frans Radebe; Daniel Golparian; Elena Shipitsyna; Pham Thanh Duy; Paul Scott; Lesley T. Cutcliffe; Colette O'Neill; Surendra Parmar; Rachel Pitt; Stephen Baker; C Ison; Peter Marsh; Hamid Jalal; David A. Lewis; Magnus Unemo; Ian N. Clarke; Julian Parkhill; Nicholas R. Thomson
The use of whole-genome sequencing as a tool for the study of infectious bacteria is of growing clinical interest. Chlamydia trachomatis is responsible for sexually transmitted infections and the blinding disease trachoma, which affect hundreds of millions of people worldwide. Recombination is widespread within the genome of C. trachomatis, thus whole-genome sequencing is necessary to understand the evolution, diversity, and epidemiology of this pathogen. Culture of C. trachomatis has, until now, been a prerequisite to obtain DNA for whole-genome sequencing; however, as C. trachomatis is an obligate intracellular pathogen, this procedure is technically demanding and time consuming. Discarded clinical samples represent a large resource for sequencing the genomes of pathogens, yet clinical swabs frequently contain very low levels of C. trachomatis DNA and large amounts of contaminating microbial and human DNA. To determine whether it is possible to obtain whole-genome sequences from bacteria without the need for culture, we have devised an approach that combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification. Using IMS-MDA in conjunction with high-throughput multiplexed Illumina sequencing, we have produced the first whole bacterial genome sequences direct from clinical samples. We also show that this method can be used to generate genome data from nonviable archived samples. This method will prove a useful tool in answering questions relating to the biology of many difficult-to-culture or fastidious bacteria of clinical concern.
PLOS ONE | 2010
Olga Gandelman; Vicki Church; Cathy Moore; Guy Kiddle; Christopher Carne; Surendra Parmar; Hamid Jalal; Laurence Carlo Tisi; James Augustus Henry Murray
Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings.
Nature Protocols | 2013
Helena M. B. Seth-Smith; Simon R. Harris; Paul Scott; Surendra Parmar; Peter Marsh; Magnus Unemo; Ian N. Clarke; Julian Parkhill; Nicholas R. Thomson
The study of bacterial populations using whole-genome sequencing is of considerable scientific and clinical interest. However, obtaining bacterial genomic information is not always trivial: the target bacteria may be difficult to culture or uncultured, and they may be found within samples containing complex mixtures of other contaminating microbes and/or host cells, from which it is very difficult to derive robust sequencing data. Here we describe our procedure to generate sufficient DNA for whole-genome sequencing from clinical samples and without the need for culture, as successfully used on the difficult-to-culture, obligate intracellular pathogen Chlamydia trachomatis. Our protocol combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification (WGA), which is followed by high-throughput sequencing. Compared with other techniques that might be used to generate such data, IMS-MDA is an inexpensive, low-technology and highly transferable process that provides amplified genomic DNA for sequencing from target bacteria in under 5 h, with little hands-on time.
European Respiratory Journal | 2015
Tristan W. Clark; Marie-Jo Medina; Sally Batham; Martin D. Curran; Surendra Parmar; Karl G. Nicholson
Both viruses and bacteria are thought to cause exacerbations of chronic obstructive pulmonary disease (COPD); however, the relative importance of each remains uncertain. C-reactive protein (CRP) levels increase during exacerbations but the relationship with aetiology is not established. We aimed to explore the relationship between serum CRP and the rate of detection of viruses and bacteria. This was a prospectively recruited, observational study of patients hospitalised with exacerbations of COPD. Nasopharyngeal swabs were tested for respiratory viruses by reverse transcriptase-PCR. Sputum and blood were collected for bacterial culture and urine tested for pneumococcal antigen. CRP levels were measured on sera. CRP and other factors associated with viral, bacterial or mixed detection were assessed using multiple logistic regression analysis. 264 patients with exacerbations of COPD were studied: 26% tested positive for respiratory viruses only, 13% had bacteria only, 12% had mixed viral/bacterial detection, and 49% had no pathogens detected. CRP level and temperature were strongly associated with viral detection rate (p<0.001 and p=0.004, respectively) and mixed viral/bacterial detection rate (p=0.02 and p=0.03, respectively) on multivariate analysis. Bacterial detection rate was not associated with CRP level or body temperature. This study supports the role of viruses as important aetiological agents causing exacerbations of COPD. Detection of respiratory viruses strongly associated with CRP level and temperature in hospitalised COPD patients http://ow.ly/Ac24U
Journal of Infection | 2014
Tristan W. Clark; Marie-Jo Medina; Sally Batham; Martin D. Curran; Surendra Parmar; Karl G. Nicholson
Summary Objectives Many adult patients hospitalised with acute respiratory illness have viruses detected but the overall importance of viral infection compared to bacterial infection is unclear. Methods Patients were recruited from two acute hospital sites in Leicester (UK) over 3 successive winters. Samples were taken for viral and bacterial testing. Results Of the 780 patients hospitalised with acute respiratory illness 345 (44%) had a respiratory virus detected. Picornaviruses were the most commonly isolated viruses (detected in 23% of all patients). Virus detection rates exceeded 50% in patients with exacerbation of asthma (58%), acute bronchitis and Influenza-like-illness (64%), and ranged from 30 to 50% in patients with an exacerbation of COPD (38%), community acquired pneumonia (36%) and congestive cardiac failure (31%). Bacterial detection was relatively frequent in patients with exacerbation of COPD and pneumonia (25% and 33% respectively) but was uncommon in all other groups. Antibiotic use was high across all clinical groups (76% overall) and only 21% of all antibiotic use occurred in patients with detectable bacteria. Conclusions Respiratory viruses are the predominant detectable aetiological agents in most hospitalised adults with acute respiratory illness. Antibiotic usage in hospital remains excessive including in clinical conditions associated with low rates of bacterial detection. Efforts at reducing excess antibiotic use should focus on these groups as a priority. Registered International Standard Controlled Trial Number: 21521552.
Genome Research | 2017
James Hadfield; Simon R. Harris; Helena M. B. Seth-Smith; Surendra Parmar; Patiyan Andersson; Philip M. Giffard; Julius Schachter; Jeanne Moncada; Louise Ellison; María Lucía Gallo Vaulet; Marcelo Rodríguez Fermepin; Frans Radebe; Suyapa Mendoza; Sander Ouburg; Servaas A. Morré; Konrad Sachse; Mirja Puolakkainen; Suvi Korhonen; Chris Sonnex; Rebecca C. Wiggins; Hamid Jalal; Tamara Brunelli; Patrizia Casprini; Rachel Pitt; Cathy Ison; Alevtina Savicheva; Elena Shipitsyna; Ronza Hadad; Laszlo Kari; Matthew J. Burton
Chlamydia trachomatis is the worlds most prevalent bacterial sexually transmitted infection and leading infectious cause of blindness, yet it is one of the least understood human pathogens, in part due to the difficulties of in vitro culturing and the lack of available tools for genetic manipulation. Genome sequencing has reinvigorated this field, shedding light on the contemporary history of this pathogen. Here, we analyze 563 full genomes, 455 of which are novel, to show that the history of the species comprises two phases, and conclude that the currently circulating lineages are the result of evolution in different genomic ecotypes. Temporal analysis indicates these lineages have recently expanded in the space of thousands of years, rather than the millions of years as previously thought, a finding that dramatically changes our understanding of this pathogens history. Finally, at a time when almost every pathogen is becoming increasingly resistant to antimicrobials, we show that there is no evidence of circulating genomic resistance in C. trachomatis.
Journal of Clinical Microbiology | 2010
Liang-Ta Wu; Martin D. Curran; Joanna Ellis; Surendra Parmar; Allyson V. Ritchie; Pia I. Sharma; Jean-Pierre Allain; Hamid Jalal; Maria Zambon; Helen Lee
ABSTRACT A new nucleic acid amplification-based rapid test for diagnosis of pandemic influenza (H1N1) 2009 virus was developed. The molecular test for pandemic H1N1, SAMBA ( s imple am plification- b ased a ssay), is based on isothermal amplification and visual detection on a dipstick characterized by high sensitivity, high specificity, a short turnaround time, and minimal technical requirements. The amplification step is monitored with an internal control to ensure correct interpretation of test results. The clinical performance of this assay was evaluated using blinded RNA samples extracted from nasal/throat swab specimens from 262 patients exhibiting influenza-like illness. Compared with the United Kingdom National Standard Method, based on quantitative reverse transcription-PCR, the sensitivity, specificity, positive predictive value, and negative predictive value of the new assay were 95.3% (95% confidence interval, 88.5 to 98.7%), 99.4% (95% confidence interval, 96.9 to 99.9%), 98.8% (95% confidence interval, 93.5 to 99.9%), and 97.8% (95% confidence interval, 94.4 to 99.4%), respectively. The SAMBA for pandemic H1N1 provides a new technology that could potentially facilitate timely diagnosis and management of infected individuals, thereby informing decision making with regard to patient isolation during a pandemic outbreak.
Journal of Clinical Microbiology | 2013
Liang-Ta Wu; Isabelle Le Thomas; Martin D. Curran; Joanna Ellis; Surendra Parmar; Neha Goel; Pia I. Sharma; Jean-Pierre Allain; Helen Lee
ABSTRACT Early diagnosis and management of influenza virus infection directly correlates with the effectiveness in disease control. Current molecular influenza virus tests were designed for use in diagnostic testing facilities, where sophisticated equipment and highly trained technicians are available. A longer turnaround time for the centralized testing than when testing near the sample source could delay the initiation of medical intervention, thereby reducing the efficacy of antiviral treatment. The new assay, the SAMBA (simple amplification-based assay) Flu duplex test, is a dipstick-based molecular assay developed to provide a simple, accurate, and cost-effective solution for the diagnosis of influenza A/B viruses intended for near-patient testing. The test presents an alternative format of influenza virus molecular testing that utilizes isothermal amplification and visual detection of nucleic acid on a test strip. The entire test procedure (extraction, amplification, and detection) is integrated into an enclosed semiautomated system. Analytically, the SAMBA Flu duplex test detects 95 and 85 copies of viral genomes for influenza A and B viruses, respectively, with no cross-reactivity observed against other common respiratory pathogens. The clinical performance was established by blind testing of 328 nasal/throat and nasopharyngeal swab specimens from the United Kingdom and Belgium and comparing the results with the quantitative reverse transcription-PCR method routinely used in two public health laboratories. The SAMBA Flu duplex test showed a clinical sensitivity and specificity of 100% and 97.9% for influenza virus A and 100% and 100% for influenza virus B. The test provides a new technology that could facilitate simple and timely identification of influenza virus infection, potentially resulting in more efficient control measures.
PLOS ONE | 2014
Cathal Joseph Mcelgunn; Clint Pereira; Nicholas J. Parham; James E. Smythe; Michael J. Wigglesworth; Anna Smielewska; Surendra Parmar; Olga Gandelman; Nick Brown; Laurence Carlo Tisi; Martin D. Curran
Here we describe a method for the detection of Clostridium difficile from stool using a novel low-complexity and rapid extraction process called Heat Elution (HE). The HE method is two-step and takes just 10 minutes, no specialist instruments are required and there is minimal hands-on time. A test method using HE was developed in conjunction with Loop-mediated Isothermal Amplification (LAMP) combined with the real-time bioluminescent reporter system known as BART targeting the toxin B gene (tcdB). The HE-LAMP-BART method was evaluated in a pilot study on clinical fecal samples (tcdB +, n = 111; tcdB −, n = 107). The HE-LAMP-BART method showed 95.5% sensitivity and 100% specificity against a gold standard reference method using cytotoxigenic culture and also a silica-based robotic extraction followed by tcdB PCR to control for storage. From sample to result, the HE-LAMP-BART method typically took 50 minutes, whereas the PCR method took >2.5 hours. In a further study (tcdB +, n = 47; tcdB −, n = 28) HE-LAMP-BART was compared to an alternative commercially available LAMP-based method, Illumigene (Meridian Bioscience, OH), and yielded 87.2% sensitivity and 100% specificity for the HE-LAMP-BART method compared to 76.6% and 100%, respectively, for Illumigene against the reference method. A subset of 27 samples (tcdB +, n = 25; tcdB −, n = 2) were further compared between HE-LAMP-BART, Illumigene, GeneXpert (Cepheid, Sunnyvale, CA) and RIDA®QUICK C. difficile Toxin A/B lateral flow rapid test (R-Biopharm, Darmstadt, Germany) resulting in sensitivities of HE-LAMP-BART 92%, Illumigene 72% GeneXpert 96% and RIDAQuick 76% against the reference method. The HE-LAMP-BART method offers the advantages of molecular based approaches without the cost and complexity usually associated with molecular tests. Further, the rapid time-to-result and simple protocol means the method can be applied away from the centralized laboratory settings.
British Journal of Biomedical Science | 2012
A.J. Parham; Surendra Parmar; N. Kumar; S. Aliyu; Martin D. Curran; H. Zhang
Abstract The Qiagen QIAsymphony SP is a high-throughput (up to 96 samples per run), fully-automated nucleic acid isolation system. It was implemented in the authors’ laboratory to cope with the high demand for pandemic H1N1 influenza testing in 2009. This study evaluated the QIAsymphony SP for viral nucleic acid isolation from quality control materials, pure cultures and various clinical specimens. The effect of varying sample volume on detection sensitivity was investigated using serial 10-fold dilutions of pure viral specimens and target nucleic acids were detected by real-time polymerase chain reaction (PCR) assays. Little variability in detection sensitivity was observed for all the viral targets tested, although variation in cycle threshold values was apparent in some cases. Importantly, pathogens were detectable over a broad concentration range and from diverse clinical specimens. Removal of PCR inhibitors was generally effective, as demonstrated by detection of viral nucleic acids and/or internal controls. The results demonstrate that the QIAsymphony SP is suitable for use in routine virology molecular diagnostics, and provides a high-throughput capacity, which is needed in peak seasons of infection or in centralised laboratories.