Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surendra Vikram is active.

Publication


Featured researches published by Surendra Vikram.


Environmental Microbiology | 2016

Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community

Surendra Vikram; Leandro D. Guerrero; Thulani P. Makhalanyane; Phuong Thi Le; Mary Seely; Don A. Cowan

In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.


Genome Biology and Evolution | 2016

Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts

Phuong Thi Le; Thulani P. Makhalanyane; Leandro D. Guerrero; Surendra Vikram; Yves Van de Peer; Don A. Cowan

Abstract Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the two metagenomes were identified. The Antarctic hypolithic metagenome displayed a high number of sequences assigned to sigma factors, replication, recombination and repair, translation, ribosomal structure, and biogenesis. In contrast, the Namib Desert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significant divergence in the genetic determinants of amino acid and nucleotide metabolism between these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes.


Scientific Reports | 2017

Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata

Casper N. Kamutando; Surendra Vikram; Gilbert Kamgan-Nkuekam; Thulani P. Makhalanyane; Michelle Greve; Johannes J. Le Roux; Don A. Cowan; Angel Valverde

Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.


Scientific Reports | 2016

Habitat heterogeneity and connectivity shape microbial communities in South American peatlands

Felix Oloo; Angel Valverde; María Victoria Quiroga; Surendra Vikram; Don A. Cowan; Gabriela Mataloni

Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.


Science of The Total Environment | 2018

Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation

Tanzelle Oberholster; Surendra Vikram; Don A. Cowan; Angel Valverde

Microbes are key determinants of plant health and productivity. Previous studies have characterized the rhizosphere microbiomes of numerous plant species, but little information is available on how rhizosphere microbial communities change over time under crop rotation systems. Here, we document microbial communities in the rhizosphere of sorghum and sunflower (at seedling, flowering and senescence stages) grown in crop rotation in four different soils under field conditions. A comprehensive 16S rRNA-based amplicon sequencing survey revealed that the differences in alpha-diversity between rhizosphere and bulk soils changed over time. Sorghum rhizosphere soil microbial diversity at flowering and senescence were more diverse than bulk soils, whereas the microbial diversity of sunflower rhizosphere soils at flowering were less diverse with respect to bulk soils. Sampling time was also important in explaining the variation in microbial community composition in soils grown with both crops. Temporal changes observed in the rhizosphere microbiome were both plant-driven and due to seasonal changes in the bulk soil biota. Several individual taxa were relatively more abundant in the rhizosphere and/or found to be important in maintaining rhizosphere microbial networks. Interestingly, some of these taxa showed similar patterns at different sampling times, suggesting that the same organisms may play the same functional/structural role at different plant growth stages and in different crops. Overall, we have identified prominent microbial taxa that might be used to develop microbiome-based strategies for improving the yield and productivity of sorghum and sunflower.


Frontiers in Microbiology | 2017

Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii

Pieter De Maayer; Habibu Aliyu; Surendra Vikram; Jochen Blom; Brion Duffy; Don A. Cowan; Theo H. M. Smits; Stephanus N. Venter; Teresa A. Coutinho

Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart’s wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes, has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis. While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range.


Annual research & review in biology | 2018

Metagenomic approach towards bioprospection of novel biomolecule(s) and environmental bioremediation

Manikant Tripathi; Durgesh Narain Singh; Surendra Vikram; Vijay Shankar Singh; Shailendra Kumar

Microorganisms have developed several physiological adaptations to survive within extreme ecological niches including environments contaminated with heavy metals, pesticides, polycyclic aromatic hydrocarbons, and nuclear wastes. Microorganisms in extreme habitat are potential source of “novel biomolecule(s)” such as whole microbial cells, extremozymes and extremolytes, significantly required for environmental, industrial, and red medical/pharmaceutical biotechnology. These novel biomolecule(s) are valuable resources and may help improve economic development. The scanty information about the factors governing the microbial growth within stressed Review Article Tripathi et al.; ARRB, 22(2): 1-12, 2018; Article no.ARRB.38385 2 environments is the major constraint in the recovery of novel biomolecule(s) from extreme habitats. Understanding the structure, metabolic capabilities, microbial physiology, and factors governing the composition and role of indigenous microorganism is the key to success of any study. In recent past the problems associated with classical cultivation techniques have been resolved by an emerging approach referred to as “metagenomics”. Metagenomic studies give an insight into details of the structure, metabolic and physiological capabilities of indigenous microbial communities. High-throughput sequencing technologies in conjunction with metagenomics has aided in the identification and characterization of novel culturable and uncultured microorganisms with unique capabilities. Metagenomic studies have been used for isolation and characterization of novel biomolecule(s) relevant for white, grey, and red biotechnologies. The major objective of this review is to discuss the applications of metagenomic approach for bioprospection of novel biomolecule(s) and environmental bioremediation.


Frontiers in Microbiology | 2017

Unraveling the Microbial Interactions and Metabolic Potentials in Pre- and Post-treated Sludge from a Wastewater Treatment Plant Using Metagenomic Studies

Chandni Sidhu; Surendra Vikram; Anil Kumar Pinnaka

Sewage waste represents an ecosystem of complex and interactive microbial consortia which proliferate with different kinetics according to their individual genetic as well as metabolic potential. We performed metagenomic shotgun sequencing on Ion-Torrent platform, to explore the microbial community structure, their biological interactions and associated functional capacity of pre-treated/raw sludge (RS) and post-treated/dried sludge (DS) of wastewater treatment plant. Bacterial phylotypes belonging to Epsilonproteobacteria (∼45.80%) dominated the RS with relatively few Archaea (∼1.94%) whereas DS has the dominance of beta- (30.23%) and delta- (13.38%) classes of Proteobacteria with relatively greater abundance of Archaea (∼7.18%). In particular, Epsilonproteobacteria appears as a primary energy source in RS and sulfur-reducing bacteria with methanogens seems to be in the potential syntrophic association in DS. These interactions could be ultimately responsible for carrying out amino-acid degradation, aromatic compound degradation and degradation of propionate and butyrate in DS. Our data also reveal the presence of key genes in the sludge microbial community responsible for degradation of polycyclic aromatic hydrocarbons. Potential pathogenic microbes and genes for the virulence factors were found to be relatively abundant in RS which clearly reflect the necessity of treatment of RS. After treatment, potential pathogens load was reduced, indicating the sludge hygienisation in DS. Additionally, the interactions found in this study would reveal the biological and environmental cooperation among microbial communities for domestic wastewater treatment.


Environmental Microbiology | 2017

Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems

Leandro D. Guerrero; Surendra Vikram; Thulani P. Makhalanyane; Don A. Cowan

Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H+ , Na+ and Cl+ pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.


Scientific Reports | 2018

Agulhas Current properties shape microbial community diversity and potential functionality

Sandra Phoma; Surendra Vikram; Janet K. Jansson; Isabelle J. Ansorge; Don A. Cowan; Yves Van de Peer; Thulani P. Makhalanyane

Understanding the impact of oceanographic features on marine microbial ecosystems remains a major ecological endeavour. Here we assess microbial diversity, community structure and functional capacity along the Agulhas Current system and the Subtropical Front in the South Indian Ocean (SIO). Samples collected from the epipelagic, oxygen minimum and bathypelagic zones were analysed by 16S rRNA gene amplicon and metagenomic sequencing. In contrast to previous studies, we found high taxonomic richness in surface and deep water samples, but generally low richness for OMZ communities. Beta-diversity analysis revealed significant dissimilarity between the three water depths. Most microbial communities were dominated by marine Gammaproteobacteria, with strikingly low levels of picocyanobacteria. Community composition was strongly influenced by specific environmental factors including depth, salinity, and the availability of both oxygen and light. Carbon, nitrogen and sulfur cycling capacity in the SIO was linked to several autotrophic and copiotrophic Alphaproteobacteria and Gammaproteobacteria. Taken together, our data suggest that the environmental conditions in the Agulhas Current system, particularly depth-related parameters, substantially influence microbial community structure. In addition, the capacity for biogeochemical cycling of nitrogen and sulfur is linked primarily to the dominant Gammaproteobacteria taxa, whereas ecologically rare taxa drive carbon cycling.

Collaboration


Dive into the Surendra Vikram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge