Surendran Thavagnanam
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Surendran Thavagnanam.
Clinical & Experimental Allergy | 2008
Surendran Thavagnanam; J. Fleming; A. Bromley; Michael D. Shields; Christopher Cardwell
Background Children born by Caesarean section have modified intestinal bacterial colonization and consequently may have an increased risk of developing asthma under the hygiene hypothesis. The results of previous studies that have investigated the association between Caesarean section and asthma have been conflicting.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Remi Villenave; Surendran Thavagnanam; Severine Sarlang; Jeremy Parker; Isobel Douglas; Grzegorz Skibinski; Liam Heaney; James P. McKaigue; Peter Coyle; Michael D. Shields; Ultan F. Power
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Pediatric Research | 2010
Jeremy Parker; Severine Sarlang; Surendran Thavagnanam; Grace Williamson; Dara O'Donoghue; Remi Villenave; Ultan F. Power; Michael D. Shields; Liam Heaney; Grzegorz Skibinski
There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air–liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.
Virology Journal | 2011
Remi Villenave; Dara O'Donoghue; Surendran Thavagnanam; Olivier Touzelet; Grzegorz Skibinski; Liam Heaney; James P. McKaigue; Peter Coyle; Michael D. Shields; Ultan F. Power
BackgroundHuman respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs).MethodsTo address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers.ResultsRSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates.ConclusionsThe prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.
Pediatric Research | 2011
Surendran Thavagnanam; Jeremy Parker; E. McBrien Michael; Grzegorz Skibinski; Liam Heaney; Michael D. Shields
Goblet cell hyperplasia (GCH) and decreased ciliated cells are characteristic of asthma. We examined the effects of IL-13 (2 and 20 ng/mL) on in vitro mucociliary differentiation in pediatric bronchial epithelial cells (PBECs) of normal PBEC [PBEC(N)] and asthmatic PBEC [PBEC(A)] children. Markers of differentiation, real-time PCR for MUC5AC, MUC5AC ELISA, and transepithelial electrical resistance (TEER) were assessed. Stimulation with 20 ng/mL IL-13 in PBEC(N) resulted in GCH [20 ng/mL IL-13: mean, 33.8% (SD, 7.2) versus unstimulated: mean, 18.9% (SD, 5.0); p < 0.0001] and decreased ciliated cell number [20 ng/mL IL-13: mean, 8% (SD, 5.6) versus unstimulated: mean, 22.7% (SD,7.6); p < 0.01]. PBEC(N) stimulated with 20 ng/mL IL-13 resulted in >5-fold (SD, 3.2) increase in MUC5AC mRNA expression, p < 0.001, compared with unstimulated PBEC(N). In PBEC(A), GCH was also seen [20 ng/mL IL-13: mean, 44.7% (SD, 16.4) versus unstimulated: mean, 30.4% (SD, 13.9); p < 0.05] with a decreased ciliated cell number [20 ng/mL IL-13: mean, 8.8% (SD, 7.5) versus unstimulated: mean, 16.3% (SD, 4.2); p < 0.001]. We also observed an increase in MUC5AC mRNA expression with 20 ng/mL IL-13 in PBEC(A), p < 0.05. IL-13 drives PBEC(N) toward an asthmatic phenotype and worsens the phenotype in PBEC(A) with reduced ciliated cell numbers and increased goblet cells.
PLOS ONE | 2013
Jeremy Parker; Surendran Thavagnanam; Grzegorz Skibinski; Jeremy Lyons; Jennifer Bell; Liam Heaney; Michael D. Shields
Asthma is a chronic inflammatory disease characterised by airways remodelling. In mouse models IL-9 and IL-13 have been implicated in airways remodelling including mucus hypersecretion and goblet cell hyperplasia. Their role, especially that of IL-9, has been much less studied in authentic human ex vivo models of the bronchial epithelium from normal and asthmatic children. We assessed the effects of IL-9, IL-13 and an IL-9/IL-13 combination, during differentiation of bronchial epithelial cells from normal (n = 6) and asthmatic (n = 8) children. Cultures were analysed for morphological markers and factors associated with altered differentiation (MUC5AC, SPDEF and MMP-7). IL-9, IL-9/IL-13 combination and IL-13 stimulated bronchial epithelial cells from normal children had fewer ciliated cells [14.8% (SD 8.9), p = 0.048, 12.4 (SD 6.1), p = 0.016 and 7.3% (SD 6.6), p = 0.031] respectively compared with unstimulated [(21.4% (SD 9.6)]. IL-9 stimulation had no effect on goblet cell number in either group whereas IL-9/IL-13 combination and IL-13 significantly increased goblet cell number [24.8% (SD 8.8), p = 0.02), 32.9% (SD 8.6), p = 0.007] compared with unstimulated normal bronchial cells [(18.6% (SD 6.2)]. All stimulations increased MUC5AC mRNA in bronchial epithelial cells from normal children and increased MUC5AC mucin secretion. MMP-7 localisation was dysregulated in normal bronchial epithelium stimulated with Th2 cytokines which resembled the unstimulated bronchial epithelium of asthmatic children. All stimulations resulted in a significant reduction in transepithelial electrical resistance values over time suggesting a role in altered tight junction formation. We conclude that IL-9 does not increase goblet cell numbers in bronchial epithelial cell cultures from normal or asthmatic children. IL-9 and IL-13 alone and in combination, reduce ciliated cell numbers and transepithelial electrical resistance during differentiation of normal epithelium, which clinically could inhibit mucociliary clearance and drive an altered repair mechanism. This suggests an alternative role for IL-9 in airways remodelling and reaffirms IL-9 as a potential therapeutic target.
Journal of Virology | 2010
Remi Villenave; Olivier Touzelet; Surendran Thavagnanam; Severine Sarlang; Jeremy Parker; Grzegorz Skibinski; Liam Heaney; James P. McKaigue; Peter Coyle; Michael D. Shields; Ultan F. Power
ABSTRACT Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Acta Paediatrica | 2010
Surendran Thavagnanam; S.N. Christie; Gary M. Doherty; Peter Coyle; Michael D. Shields; Liam Heaney
Aim: The aim of this study was to determine if asthmatic children have viruses more commonly detected in lower airways during asymptomatic periods than normal children.
Cough | 2013
Michael D. Shields; Surendran Thavagnanam
Cough is one of the most common symptoms that patients bring to the attention of primary care clinicians. Cough can be designated as acute (<3 weeks in duration), prolonged acute cough (3 to 8 weeks in duration) or chronic (> 8 weeks in duration). The use of the term ‘prolonged acute cough’ in a cough guideline allows a period of natural resolution to occur before further investigations are warranted. The common causes are in children with post viral or pertussis like illnesses causing the cough. Persistent bacterial bronchitis typically occurs when an initial dry acute cough due to a viral infection becomes a prolonged wet cough remaining long after the febrile illness has resolved. This cough responds to a completed course of appropriate antibiotics.
Pediatric Pulmonology | 2014
Anna Marie Nathan; Ananthan Muthusamy; Surendran Thavagnanam; Azfawahiza Hashim; Jessie de Bruyne
To investigate the impact of chronic suppurative lung disease (CSLD) on growth and lung function in the child as well as quality of life of the child and parent.