Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh B. Singh is active.

Publication


Featured researches published by Suresh B. Singh.


Bioorganic & Medicinal Chemistry Letters | 2014

The use of spirocyclic scaffolds in drug discovery

Yajun Zheng; Colin M. Tice; Suresh B. Singh

Owing to their inherent three-dimensionality and structural novelty, spiro scaffolds have been increasingly utilized in drug discovery. In this brief review, we highlight selected examples from the primary medicinal chemistry literature during the last three years to demonstrate the versatility of spiro scaffolds. With recent progress in synthetic methods providing access to spiro building blocks, spiro scaffolds are likely to be used more frequently in drug discovery.


Current Medicinal Chemistry | 2008

INHIBITORS OF 11BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 1

David A. Claremon; Linghang Zhuang; Yuanjie Ye; Suresh B. Singh; Colin M. Tice; Gerard M. McGeehan

Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17β-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17β-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17β-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17β-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17β- hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17β-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented.


Bioorganic & Medicinal Chemistry Letters | 2003

Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase.

John E. Stelmach; Luping Liu; Sangita B. Patel; James V. Pivnichny; Giovanna Scapin; Suresh B. Singh; Cornelis E. C. A. Hop; Zhen Wang; John R. Strauss; Patricia M. Cameron; Elizabeth A. Nichols; Stephen J. O'Keefe; Edward A. O'Neill; Dennis M. Schmatz; Cheryl D. Schwartz; Chris M. Thompson; Dennis M. Zaller; James B. Doherty

The development of potent, orally bioavailable (in rat) and selective dihydroquinazolinone inhibitors of p38alpha MAP kinase is described. These analogues are hybrids of a pyridinylimidazole p38alpha inhibitor reported by Merck Research Laboratories and VX-745. Optimization of the C-5 phenyl and the C-7 piperidinyl substituents led to the identification of 15i which gave excellent suppression of TNF-alpha production in LPS-stimulated whole blood (IC(50)=10nM) and good oral exposure in rats (F=68%, AUCn PO=0.58 microM h).


Bioorganic & Medicinal Chemistry Letters | 2003

p38MAP kinase inhibitors. Part 1: design and development of a new class of potent and highly selective inhibitors based on 3,4-dihydropyrido[3,2-d]pyrimidone scaffold.

Swaminathan R. Natarajan; David D. Wisnoski; Suresh B. Singh; John E. Stelmach; Edward A. O'Neill; Cheryl D. Schwartz; Chris M. Thompson; Catherine E. Fitzgerald; Stephen J. O'Keefe; Sanjeev Kumar; Cornelis E. C. A. Hop; Dennis M. Zaller; Dennis M. Schmatz; James B. Doherty

A new class of p38 antagonists based on 3,4-dihydropyrido[3,2,-d]pyrimidine scaffold has been developed. These inhibitors exhibit unprecedented selectivity towards p38 over other very closely related kinases. Compounds 25, 33, and 34 were identified as benchmark analogues for follow-up studies. They show good potency for enzyme inhibition and excellent functional activity.


ACS Medicinal Chemistry Letters | 2011

Discovery of VTP-27999, an Alkyl Amine Renin Inhibitor with Potential for Clinical Utility.

Lanqi Jia; Robert D. Simpson; Jing Yuan; Zhenrong Xu; Wei Zhao; Salvacion Cacatian; Colin M. Tice; Joan Guo; Alexey V. Ishchenko; Suresh B. Singh; Zhongren Wu; Brian M. McKeever; Yuri Bukhtiyarov; Judith A. Johnson; Christopher P. Doe; Richard K. Harrison; Gerard M. McGeehan; Lawrence W. Dillard; John J. Baldwin; David A. Claremon

Structure guided optimization of a series of nonpeptidic alkyl amine renin inhibitors allowed the rational incorporation of additional polar functionality. Replacement of the cyclohexylmethyl group occupying the S1 pocket with a (R)-(tetrahydropyran-3-yl)methyl group and utilization of a different attachment point led to the identification of clinical candidate 9. This compound demonstrated excellent selectivity over related and unrelated off-targets, >15% oral bioavailability in three species, oral efficacy in a double transgenic rat model of hypertension, and good exposure in humans.


Journal of Medicinal Chemistry | 2011

Structure-based design and synthesis of 1,3-oxazinan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase type 1.

Zhenrong Xu; Colin M. Tice; Wei Zhao; Salvacion Cacatian; Yuanjie Ye; Suresh B. Singh; Peter Lindblom; Brian M. McKeever; Paula Krosky; Barbara A. Kruk; Jennifer Berbaum; Richard K. Harrison; Judith A. Johnson; Yuri Bukhtiyarov; Reshma Panemangalore; Boyd B. Scott; Yi Zhao; Joseph G. Bruno; Jennifer Togias; Joan Guo; Rong Guo; Patrick J. Carroll; Gerard M. McGeehan; Linghang Zhuang; Wei He; David A. Claremon

Structure based design led directly to 1,3-oxazinan-2-one 9a with an IC(50) of 42 nM against 11β-HSD1 in vitro. Optimization of 9a for improved in vitro enzymatic and cellular potency afforded 25f with IC(50) values of 0.8 nM for the enzyme and 2.5 nM in adipocytes. In addition, 25f has 94% oral bioavailability in rat and >1000× selectivity over 11β-HSD2. In mice, 25f was distributed to the target tissues, liver, and adipose, and in cynomolgus monkeys a 10 mg/kg oral dose reduced cortisol production by 85% following a cortisone challenge.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and biological activity of quinolinone and dihydroquinolinone p38 MAP kinase inhibitors.

Meng-Hsin Chen; Patricia Fitzgerald; Suresh B. Singh; Edward A. O’Neill; Cheryl D. Schwartz; Chris M. Thompson; Stephen J. O’Keefe; Dennis M. Zaller; James B. Doherty

Synthesis and biological activities of some quinolinone and dihydroquinolinone p38 MAP kinase inhibitors are reported. Modifications to the dihydroquinolinone pharmacophore revealed that dihydroquinolinone may be replaced with a quinolinone pharmacophore and lead to enhanced p38 inhibitory activity. From a study of C-7 substitutions by amino acid side chains, a very potent series of compounds in the p38 enzyme assays was identified. Translation of the in vitro activity into reasonable whole blood activity can be improved in this series of compounds by judicious modification of the physical properties at appropriate regions of the lead.


Journal of Medicinal Chemistry | 2014

The Medicinal Chemistry of Liver X Receptor (LXR) Modulators

Colin M. Tice; Paul B. Noto; Kristi Fan; Linghang Zhuang; Deepak S. Lala; Suresh B. Singh

LXRs have been of interest as targets for the treatment of atherosclerosis for over a decade. In recent years, LXR modulators have also garnered interest for potential use in the treatment of inflammation, Alzheimers disease (AD), dermatological conditions, hepatic steatosis, and oncology. To date, no LXR modulator has successfully progressed beyond phase I clinical trials. In this Perspective, we summarize published medicinal chemistry efforts in the context of the available crystallographic data, druglikeness, and isoform selectivity. In addition, we discuss the challenges that need to be overcome before an LXR modulator can reach clinical use.


Bioorganic & Medicinal Chemistry Letters | 2010

Spirocyclic ureas: Orally bioavailable 11β-HSD1 inhibitors identified by computer-aided drug design

Colin M. Tice; Wei Zhao; Zhenrong Xu; Salvacion Cacatian; Robert D. Simpson; Yuanjie Ye; Suresh B. Singh; Brian M. McKeever; Peter Lindblom; Joan Guo; Paula Krosky; Barbara A. Kruk; Jennifer Berbaum; Richard K. Harrison; Judith J. Johnson; Yuri Bukhtiyarov; Reshma Panemangalore; Boyd B. Scott; Yi Zhao; Joseph G. Bruno; Linghang Zhuang; Gerard M. McGeehan; Wei He; David A. Claremon

Structure-guided drug design led to the identification of a class of spirocyclic ureas which potently inhibit human 11beta-HSD1 in vitro. Lead compound 10j was shown to be orally bioavailable in three species, distributed into adipose tissue in the mouse, and its (R) isomer 10j2 was efficacious in a primate pharmacodynamic model.


Bioorganic & Medicinal Chemistry Letters | 2009

Design and Optimization of Renin Inhibitors: Orally Bioavailable Alkyl Amines

Colin M. Tice; Zhenrong Xu; Jing Yuan; Robert D. Simpson; Salvacion Cacatian; Patrick T. Flaherty; Wei Zhao; Joan Guo; Alexey V. Ishchenko; Suresh B. Singh; Zhongren Wu; Boyd B. Scott; Yuri Bukhtiyarov; Jennifer Berbaum; Jennifer M. Mason; Reshma Panemangalore; Maria Grazia Cappiello; Dominik Müller; Richard K. Harrison; Gerard M. McGeehan; Lawrence W. Dillard; John J. Baldwin; David A. Claremon

Structure-based drug design led to the identification of a novel class of potent, low MW alkylamine renin inhibitors. Oral administration of lead compound 21l, with MW of 508 and IC(50) of 0.47nM, caused a sustained reduction in mean arterial blood pressure in a double transgenic rat model of hypertension.

Collaboration


Dive into the Suresh B. Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhao

Boehringer Ingelheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge