Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh D. Sharma is active.

Publication


Featured researches published by Suresh D. Sharma.


Journal of Biological Chemistry | 2010

Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target

Kevin D. Raney; Suresh D. Sharma; Ibrahim M. Moustafa; Craig E. Cameron

Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.


PLOS Pathogens | 2012

Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides

Jamie J. Arnold; Suresh D. Sharma; Joy Y. Feng; Adrian S. Ray; Eric D. Smidansky; Maria L. Kireeva; Aesop Cho; Jason Perry; Jennifer E. Vela; Yeojin Park; Yili Xu; Yang Tian; Darius Babusis; Ona Barauskus; Blake R. Peterson; Averell Gnatt; Mikhail Kashlev; Weidong Zhong; Craig E. Cameron

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.


Journal of Biological Chemistry | 2002

Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol): A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation

Harsh B. Pathak; Saikat Kumar B. Ghosh; Allan W. Roberts; Suresh D. Sharma; Joshua D. Yoder; Jamie J. Arnold; David W. Gohara; David J. Barton; Aniko V. Paul; Craig E. Cameron

The primary oligomerization domain of poliovirus polymerase, 3Dpol, is stabilized by the interaction of the back of the thumb subdomain of one molecule with the back of the palm subdomain of a second molecule, thus permitting the head-to-tail assembly of 3Dpol monomers into long fibers. The interaction of Arg-455 and Arg-456 of the thumb with Asp-339, Ser-341, and Asp-349 of the palm is key to the stability of this interface. We show that mutations predicted to completely disrupt this interface do not produce equivalent growth phenotypes. Virus encoding a polymerase with changes of both residues of the thumb to alanine is not viable; however, virus encoding a polymerase with changes of all three residues of the palm to alanine is viable. Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability. The RNA binding activity, polymerase activity, and thermal stability of these derivatives were equivalent to that of the wild-type enzyme. The two significant differences observed for the thumb mutant were a modest reduction in the ability of the altered 3CD proteinase to process the VP0/VP3 capsid precursor and a substantial reduction in the ability of the altered 3Dpol to catalyze oriI-templated uridylylation of VPg. The defect to uridylylation was a result of the inability of 3CD to stimulate this reaction. Because 3C alone can substitute for 3CD in this reaction, we conclude that the lethal replication phenotype associated with the thumb mutant is caused, in part, by the disruption of an interaction between the back of the thumb of 3Dpol and some undefined domain of 3C. We speculate that this interaction may also be critical for assembly of other complexes required for poliovirus genome replication.


Journal of Biological Chemistry | 2006

Structural and Biological Identification of Residues on the Surface of NS3 Helicase Required for Optimal Replication of the Hepatitis C Virus

Samuel G. Mackintosh; Jeff Zhiqiang Lu; John B. Jordan; Melody K. Harrison; Bartek Sikora; Suresh D. Sharma; Craig E. Cameron; Kevin D. Raney; Joshua Sakon

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is a multifunctional enzyme with serine protease and DEXH/D-box helicase domains. A crystal structure of the NS3 helicase domain (NS3h) was generated in the presence of a single-stranded oligonucleotide long enough to accommodate binding of two molecules of enzyme. Several amino acid residues at the interface of the two NS3h molecules were identified that appear to mediate a protein-protein interaction between domains 2 and 3 of adjacent molecules. Mutations were introduced into domain 3 to disrupt the putative interface and subsequently examined using an HCV subgenomic replicon, resulting in significant reduction in replication capacity. The mutations in domain 3 were then examined using recombinant NS3h in biochemical assays. The mutant enzyme showed RNA binding and RNA-stimulated ATPase activity that mirrored wild type NS3h. In DNA unwinding assays under single turnover conditions, the mutant NS3h exhibited a similar unwinding rate and only ∼2-fold lower processivity than wild type NS3h. Overall biochemical activities of the mutant NS3h were similar to the wild type enzyme, which was not reflective of the large reduction in HCV replicative capacity observed in the biological experiment. Hence, the biological results suggest that the known biochemical properties associated with the helicase activity of NS3h do not reveal all of the likely biological roles of NS3 during HCV replication. Domain 3 of NS3 is implicated in protein-protein interactions that are necessary for HCV replication.


Journal of Biological Chemistry | 2012

Correlation between NS5A Dimerization and Hepatitis C Virus Replication

Precious Lim; Udayan Chatterji; Daniel G. Cordek; Suresh D. Sharma; Jose A. Garcia-Rivera; Craig E. Cameron; Kai Lin; Paul Targett-Adams; Philippe Gallay

Background: NS5A is critical for HCV replication, but its role is poorly understood. Results: Cysteines Cys-39, Cys-57, Cys-59, and Cys-80 are vital for NS5A dimerization, RNA binding, and viral replication. Conclusion: NS5A dimerization, RNA binding, and HCV replication are correlated. Significance: This study addresses an important issue in HCV research with NS5A being a major drug target with inhibitors in advanced stages of clinical development. Hepatitis C virus (HCV) is the main agent of acute and chronic liver diseases leading to cirrhosis and hepatocellular carcinoma. The current standard therapy has limited efficacy and serious side effects. Thus, the development of alternate therapies is of tremendous importance. HCV NS5A (nonstructural 5A protein) is a pleiotropic protein with key roles in HCV replication and cellular signaling pathways. Here we demonstrate that NS5A dimerization occurs through Domain I (amino acids 1–240). This interaction is not mediated by nucleic acids because benzonase, RNase, and DNase treatments do not prevent NS5A-NS5A interactions. Importantly, DTT abrogates NS5A-NS5A interactions but does not affect NS5A-cyclophilin A interactions. Other reducing agents such as tris(2-carboxyethyl)phosphine and 2-mercaptoethanol also abrogate NS5A-NS5A interactions, implying that disulfide bridges may play a role in this interaction. Cyclophilin inhibitors, cyclosporine A, and alisporivir and NS5A inhibitor BMS-790052 do not block NS5A dimerization, suggesting that their antiviral effects do not involve the disruption of NS5A-NS5A interactions. Four cysteines, Cys-39, Cys-57, Cys-59, and Cys-80, are critical for dimerization. Interestingly, the four cysteines have been proposed to form a zinc-binding motif. Supporting this notion, NS5A dimerization is greatly facilitated by Zn2+ but not by Mg2+ or Mn2+. Importantly, the four cysteines are vital not only for viral replication but also critical for NS5A binding to RNA, revealing a correlation between NS5A dimerization, RNA binding, and HCV replication. Altogether our data suggest that NS5A-NS5A dimerization and/or multimerization could represent a novel target for the development of HCV therapies.


PLOS ONE | 2012

The 3' untranslated regions of influenza genomic sequences are 5'PPP-independent ligands for RIG-I.

William G. Davis; J. Bradford Bowzard; Suresh D. Sharma; Mayim E Wiens; Priya Ranjan; Shivaprakash Gangappa; Olga Stuchlik; Jan Pohl; Ruben O. Donis; Jacqueline M. Katz; Craig E. Cameron; Takashi Fujita; Suryaprakash Sambhara

Retinoic acid inducible gene-I (RIG-I) is a key regulator of antiviral immunity. RIG-I is generally thought to be activated by ssRNA species containing a 5′-triphosphate (PPP) group or by unphosphorylated dsRNA up to ∼300 bp in length. However, it is not yet clear how changes in the length, nucleotide sequence, secondary structure, and 5′ end modification affect the abilities of these ligands to bind and activate RIG-I. To further investigate these parameters in the context of naturally occurring ligands, we examined RNA sequences derived from the 5′ and 3′ untranslated regions (UTR) of the influenza virus NS1 gene segment. As expected, RIG-I-dependent interferon-β (IFN-β) induction by sequences from the 5′ UTR of the influenza cRNA or its complement (26 nt in length) required the presence of a 5′PPP group. In contrast, activation of RIG-I by the 3′ UTR cRNA sequence or its complement (172 nt) exhibited only a partial 5′PPP-dependence, as capping the 5′ end or treatment with CIP showed a modest reduction in RIG-I activation. Furthermore, induction of IFN-β by a smaller, U/A-rich region within the 3′ UTR was completely 5′PPP-independent. Our findings demonstrated that RNA sequence, length, and secondary structure all contributed to whether or not the 5′PPP moiety is needed for interferon induction by RIG-I.


PLOS ONE | 2013

Native Tertiary Structure and Nucleoside Modifications Suppress tRNA’s Intrinsic Ability to Activate the Innate Immune Sensor PKR

Subba Rao Nallagatla; Christie N. Jones; Saikat Kumar B. Ghosh; Suresh D. Sharma; Craig E. Cameron; Linda L. Spremulli; Philip C. Bevilacqua

Interferon inducible protein kinase PKR is an essential component of innate immunity. It is activated by long stretches of dsRNA and provides the first line of host defense against pathogens by inhibiting translation initiation in the infected cell. Many cellular and viral transcripts contain nucleoside modifications and/or tertiary structure that could affect PKR activation. We have previously demonstrated that a 5′-end triphosphate–a signature of certain viral and bacterial transcripts–confers the ability of relatively unstructured model RNA transcripts to activate PKR to inhibit translation, and that this activation is abrogated by certain modifications present in cellular RNAs. In order to understand the biological implications of native RNA tertiary structure and nucleoside modifications on PKR activation, we study here the heavily modified cellular tRNAs and the unmodified or the lightly modified mitochondrial tRNAs (mt-tRNA). We find that both a T7 transcript of yeast tRNAPhe and natively extracted total bovine liver mt-tRNA activate PKR in vitro, whereas native E. coli, bovine liver, yeast, and wheat tRNAPhe do not, nor do a variety of base- or sugar-modified T7 transcripts. These results are further supported by activation of PKR by a natively folded T7 transcript of tRNAPhe in vivo supporting the importance of tRNA modification in suppressing PKR activation in cells. We also examine PKR activation by a T7 transcript of the A14G pathogenic mutant of mt-tRNALeu, which is known to dimerize, and find that the misfolded dimeric form activates PKR in vitro while the monomeric form does not. Overall, the in vitro and in vivo findings herein indicate that tRNAs have an intrinsic ability to activate PKR and that nucleoside modifications and native RNA tertiary folding may function, at least in part, to suppress such activation, thus serving to distinguish self and non-self tRNA in innate immunity.


Oncotarget | 2016

Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

Amanda R. Oran; Clare M. Adams; Xiao-yong Zhang; Victoria Gennaro; Harla K. Pfeiffer; Hestia Mellert; Hans E. Seidel; Kirsten Mascioli; Jordan Kaplan; Mahmoud R. Gaballa; Chen Shen; Isidore Rigoutsos; Michael P. King; Justin Cotney; Jamie J. Arnold; Suresh D. Sharma; Ubaldo E. Martinez-Outschoorn; Christopher R. Vakoc; Lewis A. Chodosh; James E. Thompson; James E. Bradner; Craig E. Cameron; Gerald S. Shadel; Christine M. Eischen; Steven B. McMahon

Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitts Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.


PLOS Pathogens | 2018

Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides

Hyung Suk Oh; Sravani Banerjee; David Aponte-Diaz; Suresh D. Sharma; Jason Aligo; Maria F. Lodeiro; Gang Ning; Rajni Sharma; Jamie J. Arnold; Craig E. Cameron

At the culmination of poliovirus (PV) multiplication, membranes are observed that contain phosphatidylinositol-4-phosphate (PI4P) and appear as vesicular clusters in cross section. Induction and remodeling of PI4P and membranes prior to or concurrent with genome replication has not been well studied. Here, we exploit two PV mutants, termed EG and GG, which exhibit aberrant proteolytic processing of the P3 precursor that substantially delays the onset of genome replication and/or impairs virus assembly, to illuminate the pathway of formation of PV-induced membranous structures. For WT PV, changes to the PI4P pool were observed as early as 30 min post-infection. PI4P remodeling occurred even in the presence of guanidine hydrochloride, a replication inhibitor, and was accompanied by formation of membrane tubules throughout the cytoplasm. Vesicular clusters appeared in the perinuclear region of the cell at 3 h post-infection, a time too slow for these structures to be responsible for genome replication. Delays in the onset of genome replication observed for EG and GG PVs were similar to the delays in virus-induced remodeling of PI4P pools, consistent with PI4P serving as a marker of the genome-replication organelle. GG PV was unable to convert virus-induced tubules into vesicular clusters, perhaps explaining the nearly 5-log reduction in infectious virus produced by this mutant. Our results are consistent with PV inducing temporally distinct membranous structures (organelles) for genome replication (tubules) and virus assembly (vesicular clusters). We suggest that the pace of formation, spatiotemporal dynamics, and the efficiency of the replication-to-assembly-organelle conversion may be set by both the rate of P3 polyprotein processing and the capacity for P3 processing to yield 3AB and/or 3CD proteins.


Nucleic Acids Research | 2018

The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts

Liang Guo; Suresh D. Sharma; Jose D. Debes; Daniel Beisang; Bernd Rattenbacher; Irina Vlasova-St. Louis; Darin L. Wiesner; Craig E. Cameron; Paul R. Bohjanen

Abstract Numerous mammalian proto-oncogene and other growth-regulatory transcripts are upregulated in malignancy due to abnormal mRNA stabilization. In hepatoma cells expressing a hepatitis C virus (HCV) subgenomic replicon, we found that the viral nonstructural protein 5A (NS5A), a protein known to bind to viral RNA, also bound specifically to human cellular transcripts that encode regulators of cell growth and apoptosis, and this binding correlated with transcript stabilization. An important subset of human NS5A-target transcripts contained GU-rich elements, sequences known to destabilize mRNA. We found that NS5A bound to GU-rich elements in vitro and in cells. Mutation of the NS5A zinc finger abrogated its GU-rich element-binding and mRNA stabilizing activities. Overall, we identified a molecular mechanism whereby HCV manipulates host gene expression by stabilizing host transcripts in a manner that would promote growth and prevent death of virus-infected cells, allowing the virus to establish chronic infection and lead to the development of hepatocellular carcinoma.

Collaboration


Dive into the Suresh D. Sharma's collaboration.

Top Co-Authors

Avatar

Craig E. Cameron

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jamie J. Arnold

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Raney

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

David Aponte-Diaz

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gang Ning

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Hyung Suk Oh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Luyun Huang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Gallay

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge