Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh G. Joshi is active.

Publication


Featured researches published by Suresh G. Joshi.


Antimicrobial Agents and Chemotherapy | 2011

Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli

Suresh G. Joshi; Moogega Cooper; Adam Yost; Michelle Paff; Utku K. Ercan; Gregory Fridman; Gary Friedman; Alexander Fridman; Ari D. Brooks

ABSTRACT Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.


American Journal of Infection Control | 2010

Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma

Suresh G. Joshi; Michelle Paff; Gary Friedman; G. Fridman; Alexander Fridman; Ari D. Brooks

BACKGROUND Bacterial contamination of surfaces with methicillin-resistant Staphylococcus aureus (MRSA) is a serious problem in the hospital environment and is responsible for significant nosocomial infections. The pathogenic contaminants form biofilms, which are difficult to treat with routine biocides. Thus, a continuous search for novel disinfection methods is essential for effective infection control measures. This demonstration of a novel technique for the control of virulent pathogens in planktonic form as well as in established biofilms may provide a progressive alternative to standard methodology. METHODS We evaluated a novel technique of normal atmospheric nonthermal plasma known as floating-electrode dielectric-barrier discharge (FE-DBD) plasma against a control of planktonic and biofilm forms of Escherichia coli, S aureus, multidrug-resistant methicillin-resistant S aureus (MRSA) -95 (clinical isolate), -USA300, and -USA400, using widely accepted techniques such as colony count assay, LIVE/DEAD BacLight Bacterial Viability assay, and XTT (2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay. RESULTS Exposure of free living planktonic forms of E coli, S aureus, and MRSA were rapidly inactivated by DBD plasma. Approximately 10(7) bacterial cells were completely (100%) killed, whereas 10(8) and 10(9) were reduced by approximately 90% to 95% and 40% to 45%, respectively, in less than 60 seconds (7.8 J/cm(2)) and completely disinfected in < or =120 seconds. In established biofilms, the susceptibility of MRSA USA400 was comparable with USA300 but less susceptible than MRSA95 (clinical isolate), S aureus, and E coli (P < .05) to FE-DBD plasma, and plasma was able to kill MRSA more than 60% within 15 seconds (1.95 J/cm(2)). The killing responses were plasma exposure-time dependent, and cell density dependent. The plasma was able disinfect surfaces in a less than 120 seconds. CONCLUSION Application of DBD plasma can be a valuable decontamination technique for the removal of planktonic and biofilm-embedded bacteria such as MRSA -USA 300, -USA 400, methicillin-sensitive S aureus (MSSA), and E coli, the more common hospital contaminants. Of interest, E coli was more resistant than S aureus phenotypes.


Journal of Pharmacology and Experimental Therapeutics | 2006

An Initial Assessment of the Systemic Pharmacokinetics of Botulinum Toxin

Easwaran Ravichandran; Yujing Gong; Fetweh H. Al Saleem; Denise M. Ancharski; Suresh G. Joshi; Lance L. Simpson

Botulinum toxin is an extraordinarily potent molecule that has an unusually long duration of action. Despite this, there is little information available on natural mechanisms for metabolism or elimination and virtually no information on pharmacologically induced mechanisms for metabolism and elimination. Therefore, a number of experiments were performed on laboratory animals that addressed two major issues: 1) the effect of blood on the structure, function, and biologic half-life of the toxin, and 2) the effect of neutralizing antibodies on half-life and elimination of circulating toxin. In the first series of studies, the metabolic transformation of toxin was assessed by incubating it in blood for varying lengths of time. At each time point, aliquots were examined to determine the amount of toxin, the structure of toxin, the catalytic activity of toxin, and the neuromuscular blocking activity of toxin. This work demonstrated that blood did not alter any characteristic of the toxin molecule. Experiments were also done in which toxin was administered to mice and rats at doses that produced clinical poisoning. The results demonstrated that the elimination half-life for native (nonmetabolized) toxin in blood and serum was 230 to 260 min. During the second series of studies, the rate of elimination of circulating toxin was studied in the presence of antibodies directed against the carboxyl-terminal half of the toxin molecule. This work demonstrated that neutralizing antibodies 1) enhanced clearance of toxin from the circulation and 2) enhanced tissue accumulation of toxin, particularly in liver and spleen.


Journal of Applied Microbiology | 2010

Biological responses of Bacillus stratosphericus to Floating Electrode-Dielectric Barrier Discharge Plasma Treatment

Moogega Cooper; G. Fridman; A. Fridman; Suresh G. Joshi

Aims:  Dielectric barrier discharge (DBD) plasma is used for sterilization of contaminated inanimate surfaces but seldomly optimized and depends upon the type of organisms and the plasma treatment duration, (net energy deposited) this efficacy varies. The proposed study was designed to see biological responses of one of the robust organism, Bacillus stratosphericus.


JAMA Dermatology | 2014

The Presence and Impact of Biofilm-Producing Staphylococci in Atopic Dermatitis

Herbert B. Allen; Nachiket Vaze; Catherine H. Choi; Tesfu Hailu; Brittain H. Tulbert; Carrie Ann Cusack; Suresh G. Joshi

IMPORTANCE Atopic dermatitis (AD) is thought to be a double-hit phenomenon with an unknown environmental component and a genetic abnormality likely centered on the filaggrin gene. Biologically, the presence of Staphylococcus aureus in AD was reported more than 2 decades ago, but the relationship to AD has been elusive. OBJECTIVE To explore the bacteria that produce the biofilms in the lesions of AD and the response of the innate immune system to these biofilm occlusions of the sweat ducts by specifically evaluating Toll-like receptor 2. DESIGN, SETTING, AND PARTICIPANTS University hospital dermatologic clinic study involving the environmental component related to the characterization, correlation, and impact of staphylococci and their biofilms in AD. We processed routine skin swabs from lesional and nonlesional skin from 40 patients with AD and performed scrapings and biopsies. We also obtained 20 samples from controls (10 inflamed skin samples and 10 normal skin samples). EXPOSURES Gram staining, bright-field microscopy, hematoxylin and eosin, periodic acid-Schiff, Congo red, and light microscopy. MAIN OUTCOMES AND MEASURES Association of staphylococcal biofilms with AD pathogenesis. RESULTS All AD-affected samples contained multidrug-resistant staphylococci, with S aureus (42.0%) and Staphylococcus epidermidis (20.0%) as the predominant species. All isolates were positive for extracellular polysaccharide and biofilm (85.0% strong biofilm producers and 15.0% moderately to weakly positive). Polymerase chain reaction revealed the biofilm-mediating icaD (93.0%) and aap (12.5%) genes in the isolates (some contained both). We also examined tissues for microbial identification, extracellular biomass formation, biofilm formation, and staphylococcal biofilm in skin tissues. Occlusion of sweat ducts with periodic acid-Schiff-positive and Congo red-positive material was noted on microscopic tissue examination. Toll-like receptor 2 was shown to be activated in AD lesional skin (immediately proximal to the sweat ducts), which likely led to the initiation of proteinase-activated receptor 2-mediated pruritus and MyD88-mediated spongiosis. CONCLUSIONS AND RELEVANCE Biofilm formation by AD-associated staphylococci almost certainly plays a major role in the occlusion of sweat ducts and leads to inflammation and pruritus. We believe the environmental hit in AD relates to staphylococci and their biofilms, which occlude sweat ducts.


Journal of Medical Microbiology | 2014

Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites.

Michael Neidrauer; Utku K. Ercan; Aparna Bhattacharyya; Joshua A. Samuels; Jason Sedlak; Ritika Trikha; Kenneth A. Barbee; Michael S. Weingarten; Suresh G. Joshi

Topical delivery of nitric oxide (NO) through a wound dressing has the potential to reduce wound infections and improve healing of acute and chronic wounds. This study characterized the antibacterial efficacy of an ointment containing NO-loaded, zinc-exchanged zeolite A that releases NO upon contact with water. The release rate of NO from the ointment was measured using a chemiluminescence detection system. Minimum bactericidal concentration assays were performed using five common wound pathogens, including Gram-negative bacteria (Escherichia coli and Acinetobacter baumannii), Gram-positive bacteria (Staphylococcus epidermidis and meticillin-resistant Staphylococcus aureus) and a fungus (Candida albicans). The time dependence of antimicrobial activity was characterized by performing log-reduction assays at four time points after 1-8 h ointment exposure. The cytotoxicity of the ointment after 24 h was assessed using cultured 3T3 fibroblast cells. Minimum microbicidal concentrations (MMCs) for bacterial organisms (5×10(7) c.f.u.) ranged from 50 to 100 mg ointment (ml media)(-1); the MMC for C. albicans (5×10(4) c.f.u.) was 50 mg ointment (ml media)(-1). Five to eight log reductions in bacterial viability and three log reductions in fungal viability were observed after 8 h exposure to NO-zeolite ointment compared with untreated organisms. Fibroblasts remained viable after 24 h exposure to the same concentration of NO-zeolite ointment as was used in antimicrobial tests. In parallel studies, full-thickness cutaneous wounds on Zucker obese rats healed faster than wounds treated with a control ointment. These data indicate that ointment containing NO-loaded zeolites could potentially be used as a broad-spectrum antimicrobial wound-healing dressing.


Vaccine | 2009

Localization of the sites and characterization of the mechanisms by which anti-light chain antibodies neutralize the actions of the botulinum holotoxin

Tsuyoshi Takahashi; Suresh G. Joshi; Fetweh H. Al-Saleem; Denise M. Ancharski; Ajay K. Singh; Zidoon Nasser; Lance L. Simpson

The recombinant, catalytically active light chain of botulinum toxin type A was evaluated as a potential vaccine candidate. Previous studies have shown that the light chain can elicit protective immunity in vivo. [Kiyatkin N, Maksymowych AB, Simpson LL. Induction of immune response by oral administration of recombinant botulinum toxin. Infect Immun 1997;65(11):4586-91], but the underlying basis for this observation was not determined. In the present study, antibodies directed against the light chain were shown to act at three different sites in the body to produce neutralization. Firstly, these antibodies acted to block toxin absorption into the body. This was demonstrated in vitro, in studies on binding and transport of toxin across epithelial monolayers, and in vivo, in studies on inhalation poisoning. Secondly, anti-light chain antibodies acted to promote clearance of toxin from the general circulation. This was demonstrated in vivo in studies on toxin levels in blood and in parallel studies on toxin accumulation in liver and spleen. Finally, anti-light chain antibodies acted to protect cholinergic nerves from botulinum toxin action. This was demonstrated in two types of in vitro assays: rate of paralysis of murine phrenic nerve-hemidiaphragm preparations and extent of binding to Neuro-2a cells. When taken together, these data show that anti-light chain antibodies can evoke three layers of protection against botulinum toxin.


Journal of Pharmacology and Experimental Therapeutics | 2008

The role of systemic handling in the pathophysiologic actions of botulinum toxin.

Fetweh H. Al-Saleem; Denise M. Ancharski; Easwaran Ravichandran; Suresh G. Joshi; Ajay K. Singh; Yujing Gong; Lance L. Simpson

The ability of botulinum toxin to poison cholinergic nerve transmission is a dynamic phenomenon that involves not only the actions of the toxin on the body but also the actions of the body on the toxin. The former has been the subject of intense research, whereas the latter has received almost no attention. Therefore, a series of studies were performed to characterize systemic handling of botulinum toxin. The results indicated that the toxin reaches the general circulation (transcytosis across epithelial cells) without obvious changes in structure or biological activity. The general circulation acts as a holding compartment until there is adequate fractional distribution to neuromuscular junctions to produce blockade of transmission. During its transit through this compartment, the toxin 1) undergoes little biotransformation, 2) does not accumulate significantly in circulating cells, and 3) remains largely in the free state. In naive animals, the t1/2 for toxin in the general circulation is approximately 10 h, and at any given point in time, there is little uptake in nontarget organs (liver, kidney, heart, and lung). In immunized animals, toxin clearance from the general circulation is rapid, and there is substantial accumulation of antibody-antigen complexes in liver. Thus, enhanced clearance from the circulation is a major mechanism by which active immunization can protect against poisoning.


Infection and Immunity | 2012

Analysis of the Mechanisms That Underlie Absorption of Botulinum Toxin by the Inhalation Route

Fetweh H. Al-Saleem; Denise M. Ancharski; Suresh G. Joshi; Md. Elias; Ajay K. Singh; Zidoon Nasser; Lance L. Simpson

ABSTRACT Botulinum toxin is a highly potent oral and inhalation poison, which means that the toxin must have an efficient mechanism for penetration of epithelial barriers. To date, three models for toxin passage across epithelial barriers have been proposed: (i) the toxin itself undergoes binding and transcytosis; (ii) an auxiliary protein, HA35, transports toxin from the apical to the basal side of epithelial cells; and (iii) an auxiliary protein, HA35, acts on the basal side of epithelial cells to disrupt tight junctions, and this permits paracellular flux of toxin. These models were evaluated by studying toxin absorption following inhalation exposure in mice. Three types of experiments were conducted. In the first, the potency of pure neurotoxin was compared with that of progenitor toxin complex, which contains HA35. The results showed that the rate and extent of toxin absorption, as well as the potency of absorbed toxin, did not depend upon, nor were they enhanced by, the presence of HA35. In the second type of experiment, the potencies of pure neurotoxin and progenitor toxin complex were compared in the absence or presence of antibodies on the apical side of epithelial cells. Antibodies directed against the neurotoxin protected against challenge, but antibodies against HA35 did not. In the final type of experiment, the potency of pure neurotoxin and toxin complex was compared in animals pretreated to deliver antibodies to the basal side of epithelial cells. Once again, antibodies directed against the neurotoxin provided resistance to challenge, but antibodies directed against HA35 did not. Taken collectively, the data indicate that the toxin by itself is capable of crossing epithelial barriers. The data do not support any hypothesis in which HA35 is essential for toxin penetration of epithelial barriers.


Journal of neuroinfectious diseases | 2016

Alzheimers Disease: A Novel Hypothesis Integrating Spirochetes, Biofilm, and the Immune System

Herbert B. Allen; Diego Morales; Krister Jones; Suresh G. Joshi

In the light of recent studies showing the presence of spirochetes in the brains of Alzheimer’s disease (AD) patients, we have studied (post mortem) the hippocampus region in the brains of similarly affected AD patients utilizing both pathology and immunohistochemistry. Our findings demonstrate that the plaques, which are characteristically found in AD brains, reveal the presence of biofilms. These biofilms are undoubtedly made by the spirochetes present there; further, we have also found that the biofilms co-localize with the β amyloid that is a signature finding in the disease. Also, we have shown activation of Toll-like receptor 2 in the same areas. We postulate this is related to the disease because this innate immune system molecule cannot penetrate the biofilm to destroy the spirochetes present there, so, inasmuch as it is activated, it destroys the surrounding tissue instead. We compare this destruction to that which is caused by activation of the adaptive immune system, which leads to much more severe devastation, much more rapidly.

Collaboration


Dive into the Suresh G. Joshi's collaboration.

Top Co-Authors

Avatar

Ari D. Brooks

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge