Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Gadde is active.

Publication


Featured researches published by Suresh Gadde.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles

Nazila Kamaly; Gabrielle Fredman; Manikandan Subramanian; Suresh Gadde; Aleksandar Pesic; Louis Cheung; Zahi A. Fayad; Robert Langer; Ira Tabas; Omid C. Farokhzad

Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub–100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV–targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.


Science Translational Medicine | 2015

Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle

Miles A. Miller; Suresh Gadde; Christina Pfirschke; Camilla Engblom; Melissa M. Sprachman; Rainer H. Kohler; Katherine S. Yang; Ashley M. Laughney; Gregory R. Wojtkiewicz; Nazila Kamaly; Sushma Bhonagiri; Mikael J. Pittet; Omid C. Farokhzad; Ralph Weissleder

Magnetic nanoparticles predict the efficacy of drug-loaded polymeric nanoparticles in vivo, helping select for tumors more responsive to nanomedicine. Particle prediction One particle, it seems, can predict the behavior of another. Thankfully, this is not the beginning of a lesson on quantum physics; instead, it is the basis for potentially designing targeted clinical trials in nanomedicine, by knowing if a tumor is likely to respond to a particular therapeutic nanoparticle. Miller et al. hypothesized that if a tumor readily takes up magnetic nanoparticles (MNP), it will also accumulate other nanoparticles carrying a deadly payload. The authors injected MNPs and a fluorescent version of the therapeutic nanoparticles into mice and followed their biodistribution using imaging. Both types of nanoparticles had similar pharmacokinetics and uptake in tumor-associated host cells owing to the enhanced permeability and retention effect. In mice with human tumors, Miller and colleagues found that the tumors with high MNP uptake were significantly more responsive than those with medium or low uptake to nanoparticles delivering chemotherapeutics. Thus, MNPs can be used as companion imaging agents during nanomedicine trials to predict the therapeutic effect of their nanosized counterparts. Therapeutic nanoparticles (TNPs) have shown heterogeneous responses in human clinical trials, raising questions of whether imaging should be used to identify patients with a higher likelihood of NP accumulation and thus therapeutic response. Despite extensive debate about the enhanced permeability and retention (EPR) effect in tumors, it is increasingly clear that EPR is extremely variable; yet, little experimental data exist to predict the clinical utility of EPR and its influence on TNP efficacy. We hypothesized that a 30-nm magnetic NP (MNP) in clinical use could predict colocalization of TNPs by magnetic resonance imaging (MRI). To this end, we performed single-cell resolution imaging of fluorescently labeled MNPs and TNPs and studied their intratumoral distribution in mice. MNPs circulated in the tumor microvasculature and demonstrated sustained uptake into cells of the tumor microenvironment within minutes. MNPs could predictably demonstrate areas of colocalization for a model TNP, poly(d,l-lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG), within the tumor microenvironment with >85% accuracy and circulating within the microvasculature with >95% accuracy, despite their markedly different sizes and compositions. Computational analysis of NP transport enabled predictive modeling of TNP distribution based on imaging data and identified key parameters governing intratumoral NP accumulation and macrophage uptake. Finally, MRI accurately predicted initial treatment response and drug accumulation in a preclinical efficacy study using a paclitaxel-encapsulated NP in tumor-bearing mice. These approaches yield valuable insight into the in vivo kinetics of NP distribution and suggest that clinically relevant imaging modalities and agents can be used to select patients with high EPR for treatment with TNPs.


Nature Communications | 2015

Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug

Miles A. Miller; Yao Rong Zheng; Suresh Gadde; Christina Pfirschke; Harshal Zope; Camilla Engblom; Rainer H. Kohler; Yoshiko Iwamoto; Katherine S. Yang; Bjorn Askevold; Nagesh Kolishetti; Mikael J. Pittet; Stephen J. Lippard; Omid C. Farokhzad; Ralph Weissleder

Therapeutic nanoparticles (TNPs) aim to deliver drugs more safely and effectively to cancers, yet clinical results have been unpredictable owing to limited in vivo understanding. Here we use single-cell imaging of intratumoral TNP pharmacokinetics and pharmacodynamics to better comprehend their heterogeneous behaviour. Model TNPs comprising a fluorescent platinum(IV) pro-drug and a clinically tested polymer platform (PLGA-b-PEG) promote long drug circulation and alter accumulation by directing cellular uptake toward tumour-associated macrophages (TAMs). Simultaneous imaging of TNP vehicle, its drug payload and single-cell DNA damage response reveals that TAMs serve as a local drug depot that accumulates significant vehicle from which DNA-damaging Pt payload gradually releases to neighbouring tumour cells. Correspondingly, TAM depletion reduces intratumoral TNP accumulation and efficacy. Thus, nanotherapeutics co-opt TAMs for drug delivery, which has implications for TNP design and for selecting patients into trials.


Archive | 2012

Nanoparticles for Targeted and Temporally Controlled Drug Delivery

Archana Swami; Jinjun Shi; Suresh Gadde; Alexander R. Votruba; Nagesh Kolishetti; Omid C. Farokhzad

With advances in nanotechnology, it is now possible to develop highly specific and effective treatments for a myriad of important human diseases including cancer and cardiovascular and inflammatory diseases. One important obstacle in the development of safer and more effective therapeutics has been the challenge of delivering drugs to the site of action at an optimal exposure and rate. The design and development of biocompatible, targeted nanoparticles that control the release of drugs at the site of interest has the potential to revolutionize drug development and enable entirely new therapeutic approaches such as RNA interference (RNAi). This chapter gives an insight into the development of nanoparticle platforms for the targeted and temporally controlled delivery of drugs with minimal off target effects and reviews the available classes of ligands for targeting applications.


ACS Nano | 2016

Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis

Nazila Kamaly; Gabrielle Fredman; Jhalique Jane R. Fojas; Manikandan Subramanian; Won Ii Choi; Katherine Zepeda; Cristian Vilos; Mikyung Yu; Suresh Gadde; Jun Wu; Jaclyn Milton; Renata Carvalho Leitao; Livia Rosa Fernandes; Moaraj Hasan; Huayi Gao; Vance Nguyen; Jordan Harris; Ira Tabas; Omid C. Farokhzad

Inflammation is an essential protective biological response involving a coordinated cascade of signals between cytokines and immune signaling molecules that facilitate return to tissue homeostasis after acute injury or infection. However, inflammation is not effectively resolved in chronic inflammatory diseases such as atherosclerosis and can lead to tissue damage and exacerbation of the underlying condition. Therapeutics that dampen inflammation and enhance resolution are currently of considerable interest, in particular those that temper inflammation with minimal host collateral damage. Here we present the development and efficacy investigations of controlled-release polymeric nanoparticles incorporating the anti-inflammatory cytokine interleukin 10 (IL-10) for targeted delivery to atherosclerotic plaques. Nanoparticles were nanoengineered via self-assembly of biodegradable polyester polymers by nanoprecipitation using a rapid micromixer chip capable of producing nanoparticles with retained IL-10 bioactivity post-exposure to organic solvent. A systematic combinatorial approach was taken to screen nanoparticles, resulting in an optimal bioactive formulation from in vitro and ex vivo studies. The most potent nanoparticle termed Col-IV IL-10 NP22 significantly tempered acute inflammation in a self-limited peritonitis model and was shown to be more potent than native IL-10. Furthermore, the Col-IV IL-10 nanoparticles prevented vulnerable plaque formation by increasing fibrous cap thickness and decreasing necrotic cores in advanced lesions of high fat-fed LDLr(-/-) mice. These results demonstrate the efficacy and pro-resolving potential of this engineered nanoparticle for controlled delivery of the potent IL-10 cytokine for the treatment of atherosclerosis.


ACS Nano | 2014

High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology

Anoop K. Pal; Iraj Aalaei; Suresh Gadde; Peter Gaines; Daniel Schmidt; Philip Demokritou; Dhimiter Bello

In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology.


Advanced Healthcare Materials | 2015

Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.

Xue-Qing Zhang; Orli Even-Or; Xiaoyang Xu; Mariska van Rosmalen; Lucas Lim; Suresh Gadde; Omid C. Farokhzad; Edward A. Fisher

Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, it is demonstrated that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs are engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR is significantly more effective than free GW3965 at inducing LXR-target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Additionally, the NPs elicit negligible lipogenic gene stimulation in the liver. Using the Ldlr (-/-) mouse model of atherosclerosis, abundant colocalization of fluorescently labeled NPs within plaque macrophages following systemic administration is seen. Notably, six intravenous injections of NP-LXR over 2 weeks markedly reduce the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism.


Advanced Healthcare Materials | 2014

Development of Therapeutic Polymeric Nanoparticles for the Resolution of Inflammation

Suresh Gadde; Orli Even-Or; Nazila Kamaly; Apoorva Hasija; Philippe G. Gagnon; Krishna H. Adusumilli; Andrea Erakovic; Anoop K. Pal; Xue-Qing Zhang; Nagesh Kolishetti; Jinjun Shi; Edward A. Fisher; Omid C. Farokhzad

Liver X receptors (LXRs) attenuate inflammation by modulating the expression of key inflammatory genes, making LXRs and their ligands particularly attractive candidates for therapeutic intervention in cardiovascular, metabolic, and/or inflammatory diseases. Herein, enhanced proresolving activity of polymeric nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (LXR-NPs) is demonstrated, developed from a combinatorial library of more than 70 formulations with variations in critical physicochemical parameters. In vitro studies on peritoneal macrophages confirm that LXR-NPs are significantly more effective than the free agonist at downregulating pro-inflammatory mediators (MCP-1 and TNFα), as well as inducing the expression of LXR target genes (ABCA1 and SREBP1c). Through a zymosan-induced acute peritonitis in vivo model, LXR-NPs are found to be more efficient than free GW3965 at limiting the recruitment of polymononuclear neutrophils (50% vs 17%), suppressing the gene expression and secretion of pro-inflammatory factors MCP-1 and TNFα in peritoneal macrophages, and decreasing the resolution interval up to 4 h. Furthermore, LXR-NPs suppress the secretion of MCP-1 and TNFα by monocytes and macrophages more efficiently than the commercial drug dexamethasone. Overall, these findings demonstrate that LXR-NPs are capable of promoting resolution of inflammation and highlight the prospect of LXR-based nanotherapeutics for inflammatory diseases.


Archive | 2013

Nanoparticles For Targeted Delivery of Multiple Therapeutic Agents and Methods of Use

Pedro M. Valencia; Eric M. Pridgen; Suresh Gadde; Rohit Karnik; Robert Langer; Stephen J. Lippard; Omid C. Farokhzad


PMC | 2012

Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles

Pedro M. Valencia; Eric M. Pridgen; Brian Perea; Suresh Gadde; Christopher Sweeney; Philip W. Kantoff; Neil H. Bander; Robert Langer; Stephen J. Lippard; Omid C. Farokhzad; Rohit Karnik

Collaboration


Dive into the Suresh Gadde's collaboration.

Top Co-Authors

Avatar

Omid C. Farokhzad

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nazila Kamaly

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anoop K. Pal

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhimiter Bello

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge