Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Raja is active.

Publication


Featured researches published by Suresh Raja.


Environmental Pollution | 2010

Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study.

K. B. Beem; Suresh Raja; Florian M. Schwandner; Courtney Taylor; Taehyoung Lee; Amy P. Sullivan; Christian M. Carrico; Gavin R. McMeeking; Derek E. Day; E. J. T. Levin; Jenny L. Hand; Sonia M. Kreidenweis; Bret A. Schichtel; William C. Malm; Jeffrey L. Collett

Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha(-1) and more than doubled to 0.95 kg ha(-1) during the summer campaign.


Environment International | 2010

Resuspension of indoor aeroallergens and relationship to lung inflammation in asthmatic children.

Suresh Raja; Ying Xu; Andrea R. Ferro; Peter A. Jaques; Philip K. Hopke

Studies have shown links between the concentration of allergens found in homes and asthma. Inhalation of allergens present in settled residential dust can occur when the dust is resuspended via human activity or air currents. Although previous studies have measured allergen concentrations in homes, the focus has been on the presence of the allergens in settled dust samples. However, the actual inhalation exposure is to airborne allergens. The relationship between the settled dust composition and suspended allergens and endotoxin and the effect of exposure of these aeroallergens to asthmatics are not well understood for species typically present indoors. In this study, settled dust and airborne particulate matter samples were collected in the homes and school classrooms of asthmatic children of ages 9 to 16 and analyzed for endotoxin and allergens including dust mite and cockroach allergen, and dog and cat dander (Der p1, Der f1, Bla g1, Can f1, and Fel d1, respectively). Concentrations of cockroach allergen were below detection limit for all samples. Measurements of the settled dust samples show higher dust mite allergen in bedroom samples than in living room samples. Concentrations of airborne endotoxin and indoor allergens were generally higher in the homes than those measured at school. Within the homes, higher concentrations of airborne allergens and endotoxin were observed in the living rooms compared to the bedrooms. Resuspension rates for endotoxin, dust mite allergen, and, cat and dog dander were estimated in this study. Calculated resuspension rates for cat dander (8.1x10(-7)+/-3.5x10(-7)min(-1)) and dust mite allergen (2.1x10(-6)+/-7.6x10(-7)min(-1)and 1.4x10(-5)+/-4.6x10(-6)min(-1) for Der p 1 and Der f 1, respectively) were found to be higher than those for dog dander (3.1x10(-7)+/-1.3x10(-7)min(-1)) and endotoxin (3.6x10(-7)+/-1.6x10(-7)min(-1)). Markers of asthma inflammation including nitrate in exhaled breath condensate (EBC) and exhaled nitric oxide (eNO), were correlated with the concentrations of dust mite allergen (Der p 1) (Spearman r=0.598; p-value=0.068 for EBC and Spearman r=0.819; p-value=0.007 for eNO) and cat dander (Fel d 1) (Spearman r=0.917; p-value=0.0002 for EBC and Spearman r=0.697; p-value=0.054 for eNO) present in PM(10) samples.


Environmental Science & Technology | 2011

Heterogeneity of coarse particles in an urban area.

Uma Ramesh K. Lagudu; Suresh Raja; Philip K. Hopke; David C. Chalupa; Mark J. Utell; Gary S. Casuccio; Traci L. Lersch; Roger R. West

The variation in composition and concentration of coarse particles in Rochester, a medium-sized city in western New York, was studied using UNC passive samplers and computer-controlled scanning electron microscopy (CCSEM). The samplers were deployed in a 5 × 5 grid (2 km × 2 km per grid cell) for 2-3 week periods in two seasons (September 2008 and May 2009) at 25 different sites across Rochester. CCSEM analysis yielded size and elemental composition for individual particles and analyzed more than 800 coarse particles per sample. Based on the composition as reflected in the fluoresced X-ray spectrum, the particles were grouped into classes with similar chemical compositions using an adaptive resonance theory (ART) network. The mass fractions of particles in the identified classes were then used to assess the homogeneity of composition and concentration across the measurement domain. These results illustrate how particle sampling using the UNC passive sampler coupled with CCSEM/ART can be used to determine the concentration and source of the coarse particulate matter at multiple sites. The particle compositions were dominated by elements suggesting that the major particle sources are road dust and biological particles. Considerable heterogeneity in both composition and concentration were observed between adjacent sites as indicated by cofficient of divergence analyses.


Journal of The Air & Waste Management Association | 2005

Heterogeneous oxidation by ozone of naphthalene adsorbed at the air-water interface of micron-size water droplets.

Suresh Raja; Kalliat T. Valsaraj

Abstract The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 μm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.


Journal of The Air & Waste Management Association | 2004

Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) at the air-water interface of micron-size water droplets

Suresh Raja; Kalliat T. Valsaraj

Abstract Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenan-threne vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 μm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, α = (1.4 ± 0.4) × 10−2 was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small α = (9.7 ± 1.8) × 10−5 was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.


Journal of The Air & Waste Management Association | 2009

Using High Time Resolution Aerosol and Number Size Distribution Measurements to Estimate Atmospheric Extinction

William C. Malm; Gavin R. McMeeking; Sonia M. Kreidenweis; E. J. T. Levin; Christian M. Carrico; Derek E. Day; Jeffrey L. Collett; Taehyoung Lee; Amy P. Sullivan; Suresh Raja

Abstract Rocky Mountain National Park is experiencing reduced visibility and changes in ecosystem function due to increasing levels of oxidized and reduced nitrogen. The Rocky Mountain Atmospheric Nitrogen and Sulfur (Ro-MANS) study was initiated to better understand the origins of sulfur and nitrogen species as well as the complex chemistry occurring during transport from source to receptor. As part of the study, a monitoring program was initiated for two 1-month time periods—one during the spring and the other during late summer/fall. The monitoring program included intensive high time resolution concentration measurements of aerosol number size distribution, inorganic anions, and cations, and 24-hr time resolution of PM2.5 and PM10 mass, sulfate, nitrate, car bon, and soil-related elements concentrations. These data are combined to estimate high time resolution concentrations of PM2.5 and PM10 aerosol mass and fine mass species estimates of ammoniated sulfate, nitrate, and organic and elemental carbon. Hour-by-hour extinction budgets are calculated by using these species concentration estimates and measurements of size distribution and assuming internal and external particle mixtures. Summer extinction was on average about 3 times higher than spring extinction. During spring months, sulfates, nitrates, carbon mass, and PM10 – PM2.5 mass contributed approximately equal amounts of extinction, whereas during the summer months, carbonaceous material extinction was 2–3 times higher than other species.


Atmospheric Environment | 2008

Fog chemistry in the Texas–Louisiana Gulf Coast corridor

Suresh Raja; Ravikrishna Raghunathan; Xiao-Ying Yu; Taehyoung Lee; Jing Chen; Raghava R. Kommalapati; Karthik Murugesan; Xinhua Shen; Yuan Qingzhong; Kalliat T. Valsaraj; Jeffrey L. Collett


Atmospheric Environment | 2014

Observations of ammonia, nitric acid, and fine particles in a rural gas production region

Yi Li; Florian M. Schwandner; H. James Sewell; Angela Zivkovich; Mark Tigges; Suresh Raja; Stephen Holcomb; John V. Molenar; Lincoln Sherman; Cassie Archuleta; Taehyoung Lee; Jeffrey L. Collett


Building and Environment | 2010

Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

Ying Xu; Suresh Raja; Andrea R. Ferro; Peter A. Jaques; Philip K. Hopke; Cheryl Gressani; Larry E. Wetzel


Atmospheric Environment | 2009

Organic composition of fogwater in the Texas–Louisiana gulf coast corridor

Suresh Raja; Ravikrishna Raghunathan; Raghava R. Kommalapati; Xinhua Shen; Jeffrey L. Collett; Kalliat T. Valsaraj

Collaboration


Dive into the Suresh Raja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taehyoung Lee

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge