Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Ramaswamy is active.

Publication


Featured researches published by Suresh Ramaswamy.


Endocrinology | 2008

Structural Interactions between Kisspeptin and GnRH Neurons in the Mediobasal Hypothalamus of the Male Rhesus Monkey (Macaca mulatta) as Revealed by Double Immunofluorescence and Confocal Microscopy

Suresh Ramaswamy; Kathryn A. Guerriero; Robert B. Gibbs; Tony M. Plant

Kisspeptin is recognized to play a critical role in eliciting the pubertal resurgence of pulsatile GnRH release, the proximal trigger of puberty in higher primates. Expression of the kisspeptin receptor (GPR54) by GnRH neurons indicates a direct action of kisspeptin on the GnRH neuronal network. The purpose of the present study was to examine the distribution of kisspeptin cell bodies in the monkey hypothalamus and to assess the structural basis for the stimulatory action of kisspeptin on the GnRH neuronal network. Three castrated male rhesus monkeys, 39-51 months of age, were deeply anesthetized and their brains perfused transcardially with 4% paraformaldehyde in PBS. Serial 25-microm coronal sections throughout the hypothalamus were prepared, and immunopositive neurons identified using a cocktail of specific primary antibodies (sheep anti-kisspeptin at 1:120,000, and rabbit anti-GnRH at 1:100,000) detected with fluorescently tagged secondary antibodies (antisheep, Alexa Fluor 488; antirabbit, Cy3) in combination with confocal microscopy. Kisspeptin perikarya were found only in the mediobasal hypothalamus (MBH) almost exclusively in the posterior two-thirds of the arcuate nucleus. Surprisingly, kisspeptin-beaded axons made only infrequent contacts with GnRH neurons (kisspeptin and GnRH profiles abutting in a 0.5- to 1.0-mum optical section) in the MBH. In the median eminence, kisspeptin and GnRH axons were found in extensive and intimate association. GnRH contacts on kisspeptin perikarya and dendrites were observed. These findings indicate that nonsynaptic pathways of communication in the median eminence should be considered as a possible mechanism of kisspeptin regulation of GnRH release, and provide an anatomical basis for reciprocal control of kisspeptin neuronal activity by GnRH.


Neuroendocrinology | 2011

Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor.

Suresh Ramaswamy; Stephanie B. Seminara; Tony M. Plant

Human genetics have revealed that kisspeptin signaling and neurokinin B (NKB) signaling are both required for robust pulsatile gonadotropin-releasing hormone (GnRH) release, and therefore for puberty and maintenance of adult gonadal function. How these two peptides interact to affect GnRH pulse generation remains a mystery. To address the hierarchy of the NKB and kisspeptin signaling pathways that are essential for GnRH release, two experiments were conducted using agonadal, juvenile male monkeys. Pituitary responsiveness to GnRH was first heightened by a pulsatile GnRH infusion to use the in situ pituitary as a bioassay for GnRH release. In the first experiment (n = 3), the kisspeptin receptor (KISS1R) was desensitized by a continuous 99-hour i.v. infusion of kisspeptin-10 (100 µg/h). During the last 4 h of continuous kisspeptin-10 infusion, desensitization of KISS1R was confirmed by failure of an i.v. bolus of kisspeptin-10 to elicit GnRH release. Desensitization of KISS1R was associated with a markedly blunted GnRH response to senktide. The response to senktide was progressively restored during the 72 h following termination of continuous kisspeptin-10. An analogous design was employed in the second experiment (n = 2) to desensitize the NKB receptor (neurokinin 3 receptor, NK3R) by administration of a continuous 48-hour i.v. infusion of senktide (200 µg/h). While a bolus of senktide during the last 3 h of continuous senktide administration failed to elicit GnRH release, thus confirming desensitization of NK3R, the ability of kisspeptin to stimulate GnRH was unimpaired. The foregoing findings support the view that NKB stimulation of GnRH release is upstream from KISS1R.


Endocrinology | 2000

Dynamics of the Follicle-Stimulating Hormone (FSH)-Inhibin B Feedback Loop and Its Role in Regulating Spermatogenesis in the Adult Male Rhesus Monkey (Macaca mulatta) as Revealed by Unilateral Orchidectomy1

Suresh Ramaswamy; Gary R. Marshall; Alan S. McNeilly; Tony M. Plant

The purpose of this study was to document the morphological changes in the seminiferous epithelium that underlie the compensatory testicular hypertrophy observed in response to unilateral orchidectomy (UO) in the adult rhesus monkey and to describe the concomitant response in the endocrine feedback loops controlling testicular function in this species. Adult male monkeys were implanted with indwelling venous catheters; seven animals were then subjected to UO (data are presented from six) and three to sham UO. Profiles of circulating concentrations of FSH, LH, testosterone (T), inhibin B, and pro-alpha-C were monitored in 12-h series of sequential blood samples collected before, on the day of UO (day 0), and on days 1, 2, 4, 8, 16, 32, and 42 or 43 after UO. In the UO monkeys, the remaining testis was taken on day 44. Sertoli and germ cells in the removed and remaining testes were counted and expressed either as number per testis or, in the case of the differentiated spermatogonia (B1, B2, B3, and B4), as number per cross-section of the seminiferous tubule. UO was associated with a marked increase in the number of all germ cells more mature than undifferentiated spermatogonia (Ap) in the remaining testis. Sertoli cell number, on the other hand, did not change, and it is therefore reasonable to propose that the primary locus of the spermatogenic compensation was the differentiated spermatogonia. The additional finding that the relationship between the number of Sertoli cells and total germ cells in the remaining testis became robust (r = 0.92; P 0.05 for the removed testis) indicated that in the monkey, spermatogenesis does not normally operate at its ceiling. The increased drive to the seminiferous tubule of the remaining testis is hypothesized to be mediated by the sustained increase in FSH secretion that was observed after UO, although a role for increased testicular T production cannot be excluded. The stimulus for increased FSH secretion was presumably provided by the abrupt, 50% decline in circulating inhibin B levels. Interestingly, inhibin B secretion by the remaining testis was not dramatically affected by UO, and therefore, the deficit in circulating levels of this hormone and thus the error signal to FSH secretion were maintained for the duration of the experiment. In contrast, the changes in circulating LH and T concentrations were only transient, and within 48 h of UO, these hormonal parameters had returned to control values. The mechanisms by which the remaining testis rapidly acquires the capacity to double T production in the face of an unchanging LH drive remains to be determined. The foregoing body of evidence suggests that sperm output by the monkey testis is regulated by the circulating concentration of FSH and that in physiological situations, FSH secretion is insufficient to stimulate spermatogenesis to its ceiling. The results also indicate that FSH secretion is controlled by a feedback system in which the feedforward arm (FSH-inhibin B) is less robust than the feedback loop (inhibin B-FSH). Thus, a decrease in the inhibin B feedback signal results in a sustained increase in FSH secretion that drives the testes toward their spermatogenic ceiling, which is presumably set by Sertoli cell number.


Biology of Reproduction | 2000

Pulsatile Stimulation with Recombinant Single Chain Human Luteinizing Hormone Elicits Precocious Sertoli Cell Proliferation in the Juvenile Male Rhesus Monkey (Macaca mulatta)

Suresh Ramaswamy; Tony M. Plant; Gary R. Marshall

Abstract In this study, we determined the relative role of LH and FSH in initiating the pubertal proliferation of Sertoli cells in primates. Sixteen juvenile male rhesus monkeys (Macaca mulatta) bearing venous catheters received intermittent intravenous infusions of single chain human LH (schLH) or recombinant human FSH (rhFSH) or a combination of both for 11 days. The schLH infusion elicited a physiological testosterone response. On Day 11, monkeys were castrated, and one-half of a testis was fixed in Bouins fluid. Infusion of the gonadotropins, either alone or in combination, effected a significant increase in testicular weight, seminiferous cord diameter, and the number of Sertoli cells per testis (schLH, 295 ± 46 × 106; rhFSH, 342 ± 64 × 106; LH+FSH, 298 ± 26 × 106 versus vehicle, 204 ± 26 × 106). The latter finding indicated that LH, in addition to FSH, plays a critical role in the initiation of the pubertal proliferation of Sertoli cells in primates. Moreover, combined gonadotropin treatment led to the appearance of germ cells as mature as early primary spermatocytes, indicating that initiation of spermatogenesis had been set in motion. Because the duration of hormone stimulation was only 11 days, the latter result suggests that Leydig and Sertoli cells of the juvenile monkey testis can immediately transduce a gonadotropin signal to the germ cell.


Peptides | 2009

Kisspeptin and the regulation of the hypothalamic-pituitary-gonadal axis in the rhesus monkey (Macaca mulatta)

Tony M. Plant; Suresh Ramaswamy

The present article reviews recent studies of monkeys and, in some cases, humans that have been conducted to examine the role of kisspeptin-GPR54 signaling in the regulation of the hypothalamic-pituitary-gonadal axis in higher primates. This area of peptide biology was initiated in 2003 by the discovery that loss of function mutations of GPR54 in man were associated with hypogonadotropic hypogonadism and absent or delayed puberty. Puberty in the monkey, an experimental model commonly used to study this fundamental developmental stage, is first described. This is followed by a review of the role of kisspeptin in the regulation of the postnatal ontogeny of GnRH pulsatility. The roles of kisspeptin in GnRH pulse generation and in the feedback loops governing gonadotropin secretion in primates are then discussed. A brief section on kisspeptin-GPR54 signaling at the pituitary and gonadal levels is also included. The review concludes with a discussion of the phenomenon of GPR54 downregulation by continuous exposure to kisspeptin and its therapeutic implications.


Spermatogenesis | 2014

Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone

Suresh Ramaswamy; Gerhard F. Weinbauer

Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.


Annals of the New York Academy of Sciences | 2005

Postnatal and Pubertal Development of the Rhesus Monkey (Macaca mulatta) Testis

Tony M. Plant; Suresh Ramaswamy; David R. Simorangkir; Gary R. Marshall

Abstract: This review examines the neurobiology, endocrinology, and cell biology underlying the development of the testis from birth until puberty in the rhesus monkey, a representative higher primate.


Journal of Neuroendocrinology | 2009

Studies of the Localisation of Kisspeptin Within the Pituitary of the Rhesus Monkey (Macaca mulatta) and the Effect of Kisspeptin on the Release of Non-Gonadotropic Pituitary Hormones

Suresh Ramaswamy; Robert B. Gibbs; Tony M. Plant

Kisspeptin neurones in the arcuate nucleus play a pivotal role in the regulation of hypothalamic gonadotrophin‐releasing hormone (GnRH) secretion in higher primates. To examine whether kisspeptin also influences the function of the primate pituitary directly, two experiments were performed in adult male rhesus monkeys. First, the distribution of kisspeptin‐containing cells in the pituitary was described using fluorescence immunohistochemistry. Second, the secretion of non‐gonadotrophin adenohypophysial hormones [growth hormone (GH), prolactin and thyroid‐stimulating hormone (TSH)] and cortisol in response to i.v. kisspeptin administration was examined. Eight animals were deeply anaesthetised and transcardially perfused with 4% paraformaldehyde. Fluorescence immunohistochemistry was performed on 25‐μm thick free‐floating pituitary sections to localise immunopositive kisspeptin cells and to examine their relationship with immunostaining for luteinising hormone (LH), follicle‐stimulating hormone, GH, prolactin, α‐melanocyte‐stimulating hormone (MSH), adrenocorticotrophic hormone (ACTH) and GnRH. Kisspeptin cells were found in the intermediate lobe of all animals and, in four monkeys, this neuropeptide was also observed in cells scattered in the periphery of the anterior lobe. Kisspeptin colocalised with α‐MSH‐immunopositive cells in the intermediate lobe and, in 50% of the monkeys, with ACTH‐immuunopositive cells in the periphery of the adenohypophysis. There was no evidence for colocalisation of kisspeptin with gonadotrophs, somatotrophs or lactotrophs. Beaded kisspeptin axons were observed in the neural lobe. In addition, assay of plasma samples that had been collected for a previous study documenting kisspeptin‐10‐induced LH release in male monkeys revealed that kisspeptin administration failed to influence circulating concentrations of GH, prolactin, TSH and cortisol. Release of all four of these non‐gonadotrophic hormones, however, was stimulated markedly by NMDA, which is considered to act centrally. Although the morphological findings obtained in the present study are consistent with the notion that kisspeptin may act directly at the level of the pituitary, the nature of such an action remains to be defined.


Biology of Reproduction | 2008

Age-Related Changes in Diurnal Rhythms and Levels of Gonadotropins, Testosterone, and Inhibin B in Male Rhesus Monkeys (Macaca mulatta)

Stefan Schlatt; C. R. Pohl; Jens Ehmcke; Suresh Ramaswamy

Abstract Testosterone shows circadian rhythms in monkeys with low serum levels in the morning hours. The decline relies on a diminished frequency of LH pulses. Inhibin B shows no diurnal patterns. In elderly men, the diurnal rhythm of testosterone is blunted and inhibin levels fall. Here we explore whether aging exerts similar effects in the rhesus monkey. We collected blood samples from groups of young (6–9 yr) and old (12–16 yr) male rhesus monkeys at 20-min intervals for a period of 24 h under remote sampling via a venous catheter. We determined moment-to-moment changes in plasma levels of testosterone, FSH, and LH by RIA, and of inhibin B by ELISA. We found significant diurnal patterns of testosterone in both groups. The circadian rhythm in testosterone was enhanced in older monkeys. Testosterone levels and pulse frequencies dropped significantly below those of young monkeys during midday hours. Diminished pulse frequency of LH appeared to be responsible for the midday testosterone decrease in old monkeys, while LH and testosterone pulse frequency did not change in young monkeys at corresponding time points. Old monkeys showed extended periods of LH-pulse quiescence in the morning and midday hours. Inhibin B and FSH levels were generally lower in old monkeys compared with the young group, but neither inhibin B nor FSH showed circadian rhythms. We conclude from these data that old rhesus monkeys have a more prominent circadian rhythm of LH and testosterone resulting from an extended midday period of quiescence in the hypothalamus-pituitary-gonadal axis.


Biology of Reproduction | 2005

Gonadotropin-Independent Proliferation of the Pale Type A Spermatogonia in the Adult Rhesus Monkey (Macaca mulatta)

Gary R. Marshall; Suresh Ramaswamy; Tony M. Plant

Abstract The goal of the present study was to examine the relative roles of testosterone (T) and FSH in the proliferation and differentiation of pale type A (Ap) spermatogonia in the rhesus monkey (Macaca mulatta). Twenty adult male monkeys were treated with daily injections of a GnRH-receptor antagonist, acyline, to suppress endogenous gonadotropin secretion during an experiment comprising three phases. Phase 1 established a chronic hypogonadotropic state marked by a profound decrease in testicular size. During phase 2, half the monkeys were implanted with T-filled capsules, and the other half received control implants. Treatment with T produced circulating T levels of approximately 15 ng/ml and normal testicular T content. At the end of phase 2, monkeys were fitted with indwelling i.v. catheters and housed in remote sampling cages for the final phase. During phase 3, five monkeys from the T- and non-T-treated groups were stimulated with recombinant human FSH. The remaining five monkeys from each group received an infusion of vehicle. On the last day of FSH or vehicle infusion, monkeys were bilaterally castrated after receiving an i.v. bolus of bromodeoxyuridine (BrdU). The BrdU labeling of Ap spermatogonia was robust in the hypogonadotropic group and was uninfluenced by treatment with T and FSH, either alone or in combination. In contrast, both T and FSH stimulated spermatogonial differentiation, and this effect was amplified by combined treatment. We conclude that marked Ap spermatogonial proliferation occurs constitutively and in a gonadotropin-independent manner and that differentiation of Ap into B spermatogonia is absolutely gonadotropin dependent and may be driven by either T or FSH.

Collaboration


Dive into the Suresh Ramaswamy's collaboration.

Top Co-Authors

Avatar

Tony M. Plant

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. R. Pohl

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge