Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Rana is active.

Publication


Featured researches published by Suresh Rana.


Journal of Applied Clinical Medical Physics | 2014

Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc.

Suresh Rana; Kevin Rogers; Shyam Pokharel; ChihYao Cheng

The Radiation Therapy Oncology Group (RTOG) 0813 protocol requires the use of dose calculation algorithms with tissue heterogeneity corrections to compute dose on stereotactic body radiation therapy (SBRT) non‐small cell lung cancer (NSCLC) plans. A new photon dose calculation algorithm called Acuros XB (AXB) has recently been implemented in the Eclipse treatment planning system (TPS). The main purpose of this study was to compare the dosimetric results of AXB with that of anisotropic analytical algorithm (AAA) for RTOG 0813 parameters. Additionally, phantom study was done to evaluate the dose prediction accuracy of AXB and AAA beyond low‐density medium of different thicknesses by comparing the calculated results with the measurements. For the RTOG dosimetric study, 14 clinically approved SBRT NSCLC cases were included. The planning target volume (PTV) ranged from 3.2‐43.0 cc. RapidArc treatment plans were generated in the Eclipse TPS following RTOG 0813 dosimetric criteria, and treatment plans were calculated using AAA with heterogeneity correction (AAA plans). All the AAA plans were then recalculated using AXB with heterogeneity correction (AXB plans) for identical beam parameters and same number of monitor units. The AAA and AXB plans were compared for following RTOG 0813 parameters: ratio of prescription isodose volume to PTV (R100%), ratio of 50% prescription isodose volume to PTV (R50%), maximal dose 2 cm from the PTV in any direction as a percentage of prescription dose (D2cm), and the percentage of ipsilateral lung receiving dose equal to or larger than 20 Gy (V20). The phantom study showed that the results of AXB had better agreement with the measurements, and the difference ranged from −1.7% to 2.8%. The AAA results showed larger disagreement with the measurements, with differences from 4.1% to 12.5% for field size 5×5 cm2 and from 1.4% to 6.8% for field size 10×10 cm2. The results from the RTOG SBRT lung cases showed that, on average, the AXB plans produced lower values for R100%, R50%, and D2cm by 4.96%, 1.15%, and 1.60%, respectively, but higher V20 of ipsilateral lung by 1.09% when compared with AAA plans. In the set of AAA plans, minor deviation was seen for R100% (six cases), R50% (nine cases), D2cm (four cases), and V20 (one case). Similarly, the AXB plans also showed minor deviation for R100% (one case), R50% (eight cases), D2cm (three cases), and V20 (one case). The dosimetric results presented in the current study show that both the AXB and AAA can meet the RTOG 0813 dosimetric criteria. PACS number: 87.55.D‐, 87.55.dk, 87.55.kd, 87.55.km


Journal of Applied Clinical Medical Physics | 2014

Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric-modulated arc therapy

Suresh Rana; ChihYao Cheng; Y Zheng; Wen Hsi; Omar Zeidan; Niek Schreuder; Carlos Vargas; Gary Larson

The main purposes of this study were to 1) investigate the dosimetric quality of uniform scanning proton therapy planning (USPT) for prostate cancer patients with a metal hip prosthesis, and 2) compare the dosimetric results of USPT with that of volumetric‐modulated arc therapy (VMAT). Proton plans for prostate cancer (four cases) were generated in XiO treatment planning system (TPS). The beam arrangement in each proton plan consisted of three fields (two oblique fields and one lateral or slightly angled field), and the proton beams passing through a metal hip prosthesis was avoided. Dose calculations in proton plans were performed using the pencil beam algorithm. From each proton plan, planning target volume (PTV) coverage value (i.e., relative volume of the PTV receiving the prescription dose of 79.2 CGE) was recorded. The VMAT prostate planning was done using two arcs in the Eclipse TPS utilizing 6 MV X‐rays, and beam entrance through metallic hip prosthesis was avoided. Dose computation in the VMAT plans was done using anisotropic analytical algorithm, and calculated VMAT plans were then normalized such that the PTV coverage in the VMAT plan was the same as in the proton plan of the corresponding case. The dose‐volume histograms of calculated treatment plans were used to evaluate the dosimetric quality of USPT and VMAT. In comparison to the proton plans, on average, the maximum and mean doses to the PTV were higher in the VMAT plans by 1.4% and 0.5%, respectively, whereas the minimum PTV dose was lower in the VMAT plans by 3.4%. The proton plans had lower (or better) average homogeneity index (HI) of 0.03 compared to the one for VMAT (HI = 0.04). The relative rectal volume exposed to radiation was lower in the proton plan, with an average absolute difference ranging from 0.1% to 32.6%. In contrast, using proton planning, the relative bladder volume exposed to radiation was higher at high‐dose region with an average absolute difference ranging from 0.4% to 0.8%, and lower at low‐ and medium‐dose regions with an average absolute difference ranging from 2.7% to 10.1%. The average mean dose to the rectum and bladder was lower in the proton plans by 45.1% and 22.0%, respectively, whereas the mean dose to femoral head was lower in VMAT plans by an average difference of 79.6%. In comparison to the VMAT, the proton planning produced lower equivalent uniform dose (EUD) for the rectum (43.7 CGE vs. 51.4 Gy) and higher EUD for the femoral head (16.7 CGE vs. 9.5 Gy), whereas both the VMAT and proton planning produced comparable EUDs for the prostate tumor (76.2 CGE vs. 76.8 Gy) and bladder (50.3 CGE vs. 51.1 Gy). The results presented in this study show that the combination of lateral and oblique fields in USPT planning could potentially provide dosimetric advantage over the VMAT for prostate cancer involving a metallic hip prosthesis. PACS number: 87.55.D‐, 87.55.ne, 87.55.dk


International Journal of Particle Therapy | 2014

Proton therapy vs. VMAT for prostate cancer: a treatment planning study

Suresh Rana; ChihYao Cheng; Y Zheng; Dina Risalvato; Nancy Cersonsky; E Ramirez; Li Zhao; Gary Larson; Carlos Vargas

Abstract Purpose: The main objective of this study was to compare the dosimetric quality of volumetric modulated arc therapy (VMAT) with that of proton therapy for high-risk prostate cancer. Patients and Materials: Twelve patients with high-risk prostate cancer previously treated with uniform scanning proton therapy (USPT) were included in this study. Proton planning was done using the XiO treatment planning system (TPS) with two 1800 parallel-opposed lateral fields. The VMAT planning was done using the RapidArc technique with two arcs in the Eclipse TPS. The VMAT and proton plans were calculated using the anisotropic analytical algorithm and pencil-beam algorithm, respectively. The calculated VMAT and proton plans were then normalized so that at least 95% of the planning target volume (PTV) received the prescription dose. The dosimetric evaluation was performed by comparing the physical dose-volume parameters, which were obtained from the VMAT and proton plans. Results: The average difference in the PTV ...


Journal of Applied Clinical Medical Physics | 2013

Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real-time, high-dose-rate (HDR) brachytherapy for prostate

Shyam Pokharel; Suresh Rana; Joseph Blikenstaff; Amir Sadeghi; Bradley R. Prestidge

The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real‐time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound‐based real‐time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose‐volume histogram–based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real‐time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose‐volume histogram–based optimization (DVHO), optimizes three‐dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (Dmean) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t‐test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures. PACS number: 87.55.‐X


South Asian Journal of Cancer | 2014

A dosimetric study of volumetric modulated arc therapy planning techniques for treatment of low-risk prostate cancer in patients with bilateral hip prostheses

Suresh Rana; Shyam Pokharel

Background and Purpose: Recently, megavoltage (MV) photon volumetric modulated arc therapy (VMAT) has gained widespread acceptance as the technique of choice for prostate cancer patients undergoing external beam radiation therapy. However, radiation treatment planning for patients with metallic hip prostheses composed of high-Z materials can be challenging due to (1) presence of streak artifacts from prosthetic hips in computed tomography dataset, and (2) inhomogeneous dose distribution within the target volume. The purpose of this study was to compare the dosimetric quality of VMAT techniques in the form of Rapid Arc (RA) for treating low-risk prostate cancer patient with bilateral prostheses. Materials and Methods: Three treatment plans were created using RA techniques utilizing 2 arcs (2-RA), 3 arcs (3-RA), and 4 arcs (4-RA) for 6 MV photon beam in Eclipse treatment planning system. Each plan was optimized for total dose of 79.2 Gy prescribed to the planning target volume (PTV) over 44 fractions. All three RA plans were calculated with anisotropic analytical algorithm. Results: The mean and maximum doses to the PTV as well as the homogeneity index among all three RA plans were comparable. The plan conformity index was highest in the 2-Arc plan (1.19) and lowest in the 4-Arc plan (1.10). In comparison to the 2-RA technique, the 4-RA technique reduced the doses to rectum by up to 18.8% and to bladder by up to 7.8%. In comparison to the 3-RA technique, the 4-RA technique reduced the doses to rectum by up to 14.6% and to bladder by up to 3.5%. Conclusion: Based on the RA techniques investigated for a low-risk prostate cancer patient with bilateral prostheses, the 4-RA plan produced lower rectal and bladder dose and better dose conformity across the PTV in comparison with the 2-RA and 3-RA plans.


Journal of Medical Radiation Sciences | 2017

Dosimetric and radiobiological impact of intensity modulated proton therapy and RapidArc planning for high-risk prostate cancer with seminal vesicles

Suresh Rana; ChihYao Cheng; Li Zhao; SungYong Park; Gary Larson; Carlos Vargas; Megan Dunn; Y Zheng

The purpose of this study was to evaluate the dosimetric and radiobiological impact of intensity modulated proton therapy (IMPT) and RapidArc planning for high‐risk prostate cancer with seminal vesicles.


Journal of Medical Physics | 2014

Dosimetric impact of number of treatment fields in uniform scanning proton therapy planning of lung cancer

Suresh Rana; Hilarie Simpson; Gary Larson; Y Zheng

The main purpose of this study was to perform a treatment planning study for lung cancer comparing 2-field (2F) versus 3-field (3F) techniques in uniform scanning proton therapy (USPT). Ten clinically approved lung cancer treatment plans delivered using USPT at our proton center were included in this retrospective study. All 10 lung cases included 4D computed tomography (CT) simulation. The delineation of target volumes was done based on the maximum intensity projection (MIP) images. Both the 3F and 2F treatment plans were generated for the total dose of 74 cobalt-gray-equivalent (CGE) with a daily dose of 2 CGE. 3F plan was generated by adding an extra beam in the 2F plan. Various dosimetric parameters between 2F and 3F plans were evaluated. 3F plans produced better target coverage and conformality as well as lower mean dose to the lung, with absolute difference between 3F and 2F plans within 2%. In contrast, the addition of third beam led to increase of low-dose regions (V20 and V5) in the lung in 3F plans compared to the ones in 2F plans with absolute difference within 2%. Maximum dose to the spinal cord was lower in 2F plans. Mean dose to the heart and esophagus were comparable in both 3F and 2F plans. In conclusion, the 3F technique in USPT produced better target coverage and conformality, but increased the low-dose regions in the lung when compared to 2F technique.


Journal of Applied Clinical Medical Physics | 2015

Impact of grid size on uniform scanning and IMPT plans in XiO treatment planning system for brain cancer.

Suresh Rana; Y Zheng

The main purposes of this study are to: 1) evaluate the accuracy of XiO treatment planning system (TPS) for different dose calculation grid size based on head phantom measurements in uniform scanning proton therapy (USPT); and 2) compare the dosimetric results for various dose calculation grid sizes based on real computed tomography (CT) dataset of pediatric brain cancer treatment plans generated by USPT and intensity‐modulated proton therapy (IMPT) techniques. For phantom study, we have utilized the anthropomorphic head proton phantom provided by Imaging and Radiation Oncology Core (IROC). The imaging, treatment planning, and beam delivery were carried out following the guidelines provided by the IROC. The USPT proton plan was generated in the XiO TPS, and dose calculations were performed for grid size ranged from 1 to 3 mm. The phantom containing thermoluminescent dosimeter (TLDs) and films was irradiated using uniform scanning proton beam. The irradiated TLDs were read by the IROC. The calculated doses from the XiO for different grid sizes were compared to the measured TLD doses provided by the IROC. Gamma evaluation was done by comparing calculated planar dose distribution of 3 mm grid size with measured planar dose distribution. Additionally, IMPT plan was generated based on the same CT dataset of the IROC phantom, and IMPT dose calculations were performed for grid size ranged from 1 to 3 mm. For comparative purpose, additional gamma analysis was done by comparing the planar dose distributions of standard grid size (3 mm) with that of other grid sizes (1, 1.5, 2, and 2.5 mm) for both the USPT and IMPT plans. For patient study, USPT plans of three pediatric brain cancer cases were selected. IMPT plans were generated for each of three pediatric cases. All patient treatment plans (USPT and IMPT) were generated in the XiO TPS for a total dose of 54 Gy (relative biological effectiveness [RBE]). Treatment plans (USPT and IMPT) of each case was recalculated for grid sizes of 1, 1.5, 2, and 2.5 mm; these dosimetric results were then compared with that of 3 mm grid size. Phantom study results: There was no distinct trend exhibiting the dependence of grid size on dose calculation accuracy when calculated point dose of different grid sizes were compared to the measured point (TLD) doses. On average, the calculated point dose was higher than the measured dose by 1.49% and 2.63% for the right and left TLDs, respectively. The gamma analysis showed very minimal differences among planar dose distributions of various grid sizes, with percentage of points meeting gamma index criteria 1% and 1 mm to be from 97.92% to 99.97%. The gamma evaluation using 2% and 2 mm criteria showed both the IMPT and USPT plans have 100% points meeting the criteria. Patient study results: In USPT, there was no very distinct relationship between the absolute difference in mean planning target volume (PTV) dose and grid size, whereas in IMPT, it was found that the decrease in grid size slightly increased the PTV maximum dose and decreased the PTV mean dose and PTV D50%. For the PTV doses, the average differences were up to 0.35 Gy (RBE) and 1.47 Gy (RBE) in the USPT and IMPT plans, respectively. Dependency on grid size was not very clear for the organs at risk (OARs), with average difference ranged from −0.61 Gy (RBE) to 0.53 Gy (RBE) in the USPT plans and from −0.83 Gy (RBE) to 1.39 Gy (RBE) in the IMPT plans. In conclusion, the difference in the calculated point dose between the smallest grid size (1 mm) and the largest grid size (3 mm) in phantom for USPT was typically less than 0.1%. Patient study results showed that the decrease in grid size slightly increased the PTV maximum dose in both the USPT and IMPT plans. However, no distinct trend was obtained between the absolute difference in dosimetric parameter and dose calculation grid size for the OARs. Grid size has a large effect on dose calculation efficiency, and use of 2 mm or less grid size can increase the dose calculation time significantly. It is recommended to use grid size either 2.5 or 3 mm for dose calculations of pediatric brain cancer plans generated by USPT and IMPT techniques in XiO TPS. PACS numbers: 87.55.D‐, 87.55.ne, 87.55.dk


International Journal of Cancer Therapy and Oncology | 2014

Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans : review

Suresh Rana


International Journal of Cancer Therapy and Oncology | 2014

Treatment planning study comparing proton therapy, RapidArc and intensity modulated radiation therapy for a synchronous bilateral lung cancer case

Suresh Rana; Shyam Pokharel; Y Zheng; Li Zhao; Dina Risalvato; Carlos Vargas; Nancy Cersonsky

Collaboration


Dive into the Suresh Rana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyam Pokharel

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

ChihYao Cheng

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Li Zhao

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Megan Dunn

Cadence Design Systems

View shared research outputs
Top Co-Authors

Avatar

Amir Sadeghi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E Ramirez

Southern Nazarene University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Ahmad

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge