Surong Zhao
Bengbu Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Surong Zhao.
Anti-Cancer Drugs | 2014
Zhe Liu; Yuanyuan Zhang; Zhang Q; Surong Zhao; Chengzhu Wu; Xiu Cheng; Chen Chen Jiang; Jiang Z; Hao Liu
The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.
Journal of Bioenergetics and Biomembranes | 2015
Yiming Sun; Zhe Liu; Xue Zou; Yadong Lan; Xiaojin Sun; Xiu Wang; Surong Zhao; Chen Chen Jiang; Hao Liu
Abstract3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.
Oncology Reports | 2015
Xue Zou; Mengxiao Zhang; Yiming Sun; Surong Zhao; Yingmei Wei; Xu Dong Zhang; Chen Chen Jiang; Hao Liu
Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers.
Anti-Cancer Drugs | 2017
Dianlong Chong; Ma L; Fang Liu; Zhirui Zhang; Surong Zhao; Qiang Huo; Pei Zhang; Hailun Zheng; Hao Liu
3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.
Oncology Reports | 2018
Yuzhong Chen; Li Wei; Xiaojing Zhang; Xianfu Liu; Yansong Chen; Song Zhang; Lanzhu Zhou; Qixiang Li; Qiong Pan; Surong Zhao; Hao Liu
Previous studies have indicated that the sensitivity of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis is associated with the expression of death receptors on the cell membrane. However, drug resistance limits the use of TRAIL in cancer therapy. Numerous studies have indicated that death receptors, which induce apoptosis, are upregulated by the endoplasmic reticulum (ER) stress response. 3-Bromopyruvate (3-BP), an anticancer agent, inhibits cell growth and induces apoptosis through interfering with glycolysis. In the present study, it was demonstrated that 3-BP synergistically sensitized breast cancer cells to TRAIL-induced apoptosis via the upregulation of death receptor 5 (DR5). Furthermore, we found that the protein levels of glucose-related protein 78 (GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP) increased following treatment with 3-BP. The expression of Bax (in MCF-7 cells) and caspase-3 (in MDA-MB-231 cells) increased following co-treatment with 3-BP and TRAIL, whereas the expression of the anti-apoptotic protein Bcl-2 decreased. In order to investigate the molecular mechanism regulating this effect, the expression of adenosine monophosphate-activated protein kinase (AMPK), activated by 3-BP, was determined. It was demonstrated that phosphorylated-AMPK was upregulated following treatment with 3-BP. Notably, Compound C, an AMPK inhibitor, reversed the effects of 3-BP. Finally, a synergistic antitumor effect of 3-BP and TRAIL was observed in MCF-7 cell xenografts in nude mice. In conclusion, these results indicated that 3-BP sensitized breast cancer cells to TRAIL via the AMPK-mediated upregulation of DR5.
Journal of Bioenergetics and Biomembranes | 2018
Pei Zhang; Jie Ma; Jiao Gao; Fang Liu; Xiaojin Sun; Fang Fang; Surong Zhao; Hao Liu
Monocarboxylate transporter 1 (MCT1) has been reported to be correlated wtih decreased survival and advanced stage of progression in a series of human tumor cells and primary cancers. Specifically, MCT1 has been documented to be involved in tumor progression, including invasion and migration. Here, we investigated the mechanism and effect of regulation of MCT1 on invasion and migration of nasopharyngeal carcinoma (NPC) cells. In the study, we firstly demonstrated that the expression of MCT1 in CNE2Z cells was obviously higher than that in HNE1 cells. Downregulation of MCT1 inhibited the invasion and migration in CNE2Z cells, upregulated the expression of E-cadherin, TIMP (tissue inhibitor of metalloproteinase)-2 and TIMP-1, and suppressed the expression of matrix metalloproteinases (MMP)-9 and MMP-2. Correspondingly, upregulation of MCT1 enhanced the invasive and migratory potential in HNE1 cells, increased the expression of MMP-9 and MMP-2, and downregulated the expression of E-cadherin, TIMP-2 and TIMP-1. The mechanistic study demonstrated that the effect of MCT1 might be correlated with PI3K/Akt signaling pathway. LY294002, a PI3K inhibitor, increased the inhibition of invasion and migration mediated by downregulation of MCT1 in CNE2Z cells. These findings collectively suggested that MCT1 might act as a new regulator to improve invasion and migration of NPC cells and be correlated with activating the PI3K/Akt pathway.
American Journal of Cancer Research | 2016
Pei Zhang; Haiyu Hong; Xiaojin Sun; Hao Jiang; Shiyin Ma; Surong Zhao; Mengxiao Zhang; Zhiwei Wang; Chen Chen Jiang; Hao Liu
American Journal of Cancer Research | 2015
Zhe Liu; Yiming Sun; Haiyu Hong; Surong Zhao; Xue Zou; Renqiang Ma; Chen Chen Jiang; Zhiwei Wang; Huabin Li; Hao Liu
Journal of Bioenergetics and Biomembranes | 2015
Surong Zhao; Hong-Mei Li; Chen Chen Jiang; Tao Ma; Chengzhu Wu; Qiang Huo; Hao Liu
Acta Cirurgica Brasileira | 2016
Qiong Pan; Yiming Sun; Qili Jin; Qixiang Li; Qing Wang; Hao Liu; Surong Zhao