Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan A. Ballard is active.

Publication


Featured researches published by Susan A. Ballard.


Clinical Infectious Diseases | 2009

Efficacy of Soap and Water and Alcohol-Based Hand-Rub Preparations against Live H1N1 Influenza Virus on the Hands of Human Volunteers

M. Lindsay Grayson; Sharmila Melvani; Julian Druce; Ian G. Barr; Susan A. Ballard; Paul Donald Russell Johnson; Tasoula Mastorakos; Christopher Birch

BACKGROUND Although pandemic and avian influenza are known to be transmitted via human hands, there are minimal data regarding the effectiveness of routine hand hygiene (HH) protocols against pandemic and avian influenza. METHODS Twenty vaccinated, antibody-positive health care workers had their hands contaminated with 1 mL of 10(7) tissue culture infectious dose (TCID)(50)/0.1 mL live human influenza A virus (H1N1; A/New Caledonia/20/99) before undertaking 1 of 5 HH protocols (no HH [control], soap and water hand washing [SW], or use of 1 of 3 alcohol-based hand rubs [61.5% ethanol gel, 70% ethanol plus 0.5% chlorhexidine solution, or 70% isopropanol plus 0.5% chlorhexidine solution]). H1N1 concentrations were assessed before and after each intervention by viral culture and real-time reverse-transcriptase polymerase chain reaction (PCR). The natural viability of H1N1 on hands for >60 min without HH was also assessed. RESULTS There was an immediate reduction in culture-detectable and PCR-detectable H1N1 after brief cutaneous air drying--14 of 20 health care workers had H1N1 detected by means of culture (mean reduction, 10(3-4) TCID(50)/0.1 mL), whereas 6 of 20 had no viable H1N1 recovered; all 20 health care workers had similar changes in PCR test results. Marked antiviral efficacy was noted for all 4 HH protocols, on the basis of culture results (14 of 14 had no culturable H1N1; (P< .002) and PCR results (P< .001; cycle threshold value range, 33.3-39.4), with SW statistically superior (P< .001) to all 3 alcohol-based hand rubs, although the actual difference was only 1-100 virus copies/microL. There was minimal reduction in H1N1 after 60 min without HH. CONCLUSIONS HH with SW or alcohol-based hand rub is highly effective in reducing influenza A virus on human hands, although SW is the most effective intervention. Appropriate HH may be an important public health initiative to reduce pandemic and avian influenza transmission.


Mbio | 2013

Genomic Insights to Control the Emergence of Vancomycin-Resistant Enterococci

Benjamin P. Howden; Kathryn E. Holt; Margaret M. C. Lam; Torsten Seemann; Susan A. Ballard; Geoffrey W. Coombs; Steven Y. C. Tong; M.L. Grayson; Paul D. R. Johnson; Timothy P. Stinear

ABSTRACT Nosocomial outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are thought to occur by transmission of VREfm between patients, predicting that infection control interventions will limit cross-transmission. Despite implementation of such strategies, the incidence of VREfm infections continues to rise. We aimed to use genomics to better understand the epidemiology of E. faecium within a large hospital and investigate the reasons for failure of infection control strategies. Whole-genome sequencing was performed on 61 E. faecium (36 VREfm) isolates, predominately from blood cultures collected at a single hospital between 1998 and 2009, and on five vanB-positive anaerobic commensal bacteria isolated from human feces. Phylogenomic analysis and precise mapping of the vanB gene, which contains the Tn1549 transposon, showed that at least 18 of the 36 VREfm isolates had acquired the transposon via independent insertion events, indicating de novo generation of VREfm rather than cross-transmission. Furthermore, Tn1549 sequences found in 15 of the 36 VREfm isolates were the same as the Tn1549 sequence from one of the gut anaerobes. National and international comparator E. faecium isolates were phylogenetically interspersed with isolates from our hospital, suggesting that our findings might be globally representative. These data demonstrate that VREfm generation within a patient is common, presumably occurring in the human bowel during antibiotic therapy, and help explain our inability to reduce VREfm infections. A recommendation from our findings is that infection control practices should include screening patients for specific hospital clones of vancomycin-susceptible E. faecium rather than just VREfm. IMPORTANCE Enterococcus faecium is an increasingly important human pathogen causing predominantly antibiotic-resistant infections in hospitalized patients. Large amounts of health care funding are spent trying to control antibiotic-resistant bacteria in hospitals globally, yet in many institutions around the world, vancomycin-resistant E. faecium (VREfm) infections continue to rise. The new findings from this study help explain the failures of our current approaches to controlling vanB VREfm in health care institutions. Given the importance of this bacterium as a cause of hospital-acquired infections and the difficulties faced by infection control units in trying to prevent colonization in their institutions, the novel findings from this study provide evidence that a new approach to controlling VREfm in hospitals is required. In particular, more attention should be given to understanding the epidemiology of hospital-adapted vancomycin-susceptible E. faecium, and patients at higher risk for de novo generation of VREfm need to be identified and optimally managed. Enterococcus faecium is an increasingly important human pathogen causing predominantly antibiotic-resistant infections in hospitalized patients. Large amounts of health care funding are spent trying to control antibiotic-resistant bacteria in hospitals globally, yet in many institutions around the world, vancomycin-resistant E. faecium (VREfm) infections continue to rise. The new findings from this study help explain the failures of our current approaches to controlling vanB VREfm in health care institutions. Given the importance of this bacterium as a cause of hospital-acquired infections and the difficulties faced by infection control units in trying to prevent colonization in their institutions, the novel findings from this study provide evidence that a new approach to controlling VREfm in hospitals is required. In particular, more attention should be given to understanding the epidemiology of hospital-adapted vancomycin-susceptible E. faecium, and patients at higher risk for de novo generation of VREfm need to be identified and optimally managed.


Antimicrobial Agents and Chemotherapy | 2005

Comparison of Three PCR Primer Sets for Identification of vanB Gene Carriage in Feces and Correlation with Carriage of Vancomycin-Resistant Enterococci: Interference by vanB-Containing Anaerobic Bacilli

Susan A. Ballard; Elizabeth A. Grabsch; Paul D. R. Johnson; M. L. Grayson

ABSTRACT We assessed the sensitivities and specificities of three previously described PCR primers on enrichment broth cultures of feces for the accurate detection of fecal carriage of vancomycin-resistant enterococci (VRE). In addition, we investigated specimens that were vanB PCR positive but VRE culture negative for the presence of other vanB-containing pathogens. Feces from 59 patients (12 patients carrying vanB Enterococcus faecium strains and 47 patients negative for VRE carriage) were cultured for 36 h in aerobic brain heart infusion (BHI) broth, anaerobic BHI (AnO2BHI) broth, or aerobic Enterococcosel (EC) broth. DNA was extracted from the cultures and tested for the presence of vanB by using the PCR primers of Dutka-Malen et al. (S. Dutka-Malen, S. Evers, and P. Courvalin, J. Clin. Microbiol. 33:24-27, 1995), Bell et al. (J. M. Bell, J. C. Paton, and J. Turnidge, J. Clin. Microbiol. 36:2187-2190, 1998), and Stinear et al. (T. P. Stinear, D. C. Olden, P. D. R. Johnson, J. K. Davies, and M. L. Grayson, Lancet 357:855-856, 2001). The sensitivity (specificity) of PCR compared with the results of culture on BHI, AnO2BHI, and EC broths were 67% (96%), 50% (94%), and 17% (100%), respectively, with the primers of Dutka-Malen et al.; 92% (60%), 92% (45%), and 92% (83%), respectively, with the primers of Bell et al.; and 92% (49%), 92% (43%), and 100% (51%) respectively, with the primers of Stinear et al. The primers of both Bell et al. and Stinear et al. were significantly more sensitive than those of Dutka-Malen et al. in EC broth (P = 0.001 and P < 0.001, respectively). The poor specificities for all primer pairs were due in part to the isolation and identification of six anaerobic gram-positive bacilli, Clostridium hathewayi (n = 3), a Clostridium innocuum-like organism (n = 1), Clostridium bolteae (n = 1), and Ruminococcus lactaris-like (n = 1), from five fecal specimens that were vanB positive but VRE culture negative. All six organisms were demonstrated to contain a vanB gene identical to that of VRE. VanB-containing bowel anaerobes may result in false-positive interpretation of PCR-positive fecal enrichment cultures as VRE, regardless of the primers and protocols used.


Journal of Clinical Microbiology | 2006

Concurrent Analysis of Nose and Groin Swab Specimens by the IDI-MRSA PCR Assay Is Comparable to Analysis by Individual-Specimen PCR and Routine Culture Assays for Detection of Colonization by Methicillin-Resistant Staphylococcus aureus

Emma J. Bishop; Elizabeth A. Grabsch; Susan A. Ballard; Barrie C. Mayall; Shirley Xie; Rhea Martin; M. Lindsay Grayson

ABSTRACT The IDI-MRSA assay (Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada) with the Smart Cycler II rapid DNA amplification system (Cepheid, Sunnyvale, CA) appears to be sensitive and specific for the rapid detection of nasal colonization by methicillin-resistant Staphylococcus aureus (MRSA). We assessed the sensitivity and specificity of this assay under conditions in which both the nose and cutaneous groin specimens were analyzed together and compared the accuracy of this PCR approach to that when these specimens were tested separately and by culture assays in an inpatient population with known high rates (12 to 15%) of MRSA colonization. Of 211 patients screened, 192 had results assessable by all three methods (agar-broth culture, separate nose and groin IDI-MRSA assay, and combined nose-groin IDI-MRSA assay), with MRSA carriage noted in 31/192 (16.1%), 41/192 (21.4%), and 36/192 (18.8%) patients by each method, respectively. Compared to agar culture results, the sensitivity and specificity of the combined nose-groin IDI-MRSA assay were 88.0% and 91.6%, respectively, whereas when each specimen was processed separately, the sensitivities were 90.0% (nose) and 83.3% (groin) and the specificities were 91.7% (nose) and 90.2% (groin). IDI-MRSA assay of a combined nose-groin specimen appears to have an accuracy similar to that of the current recommended PCR protocol, providing results in a clinically useful time frame, and may represent a more cost-effective approach to using this assay for screening for MRSA colonization.


Antimicrobial Agents and Chemotherapy | 2005

Molecular Characterization of vanB Elements in Naturally Occurring Gut Anaerobes

Susan A. Ballard; K. K. Pertile; M. Lim; Paul D. R. Johnson; M. L. Grayson

ABSTRACT Previously, we reported the isolation of 10 vancomycin-resistant gram-positive anaerobic bacilli carrying the vanB ligase gene from nine hemodialysis patients (S. A. Ballard et al., Antimicrob. Agents Chemother. 49:77-81, 2005; T. P. Stinear et al., Lancet 357:855-856, 2001). In the present study, the molecular and evolutionary relationship of the vanB resistance element within these 10 anaerobes and two vancomycin-resistant Enterococcus faecium strains were examined. PCR analysis and nucleotide sequencing demonstrated that all 12 isolates carried the vanB operon associated with an element identical to Tn1549 and Tn5382 of Enterococcus. Restriction fragment length polymorphism analysis of the vanB operon in these isolates revealed two distinct patterns, and sequencing showed that minor base differences existed. PCR amplification of the joint region of a circular intermediate was demonstrated in nine of these organisms, a finding indicative of an ability to excise and circularize, an intermediate step in transposition and conjugative transfer. Southern hybridization with a vanB-vanXB probe suggests that there is one insert of the transposon in all isolates. Sequence analysis of the integration site revealed distinct sequences: the Tn1549/5382 element within E. faecium was inserted within the host chromosome, whereas nucleotide sequences surrounding the Tn1549/5382 element in the 10 anaerobes showed no significant homology to sequences in the GenBank database. We demonstrate considerable similarity between the Tn1549/5382 element identified in 10 anaerobe isolates with that found in enterococci. The homology and potential to transpose suggest a recent horizontal transfer event may have occurred. However, the original direction of transposition and the mechanism involved remains unknown.


Journal of Bacteriology | 2012

Comparative Analysis of the First Complete Enterococcus faecium Genome

Margaret M. C. Lam; Torsten Seemann; Dieter M. Bulach; Simon Gladman; Honglei Chen; Volker Haring; Robert J. Moore; Susan A. Ballard; M. Lindsay Grayson; Paul D. R. Johnson; Benjamin P. Howden; Timothy P. Stinear

Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen.


The Journal of Infectious Diseases | 2010

A Sustained Hospital Outbreak of Vancomycin- Resistant Enterococcus faecium Bacteremia due to Emergence of vanB E. faecium Sequence Type 203

Paul D. R. Johnson; Susan A. Ballard; Elizabeth A. Grabsch; Timothy P. Stinear; Torsten Seemann; Heather L. Young; M. Lindsay Grayson; Benjamin P. Howden

BACKGROUND A significant increase in the rate of vancomycin-resistant Enterococcus faecium (VREfm) bacteremia at our health service, despite improved infection control, prompted us to investigate the cause. METHODS E. faecium bacteremia (including VREfm) over a 12-year period (1998-2009) was investigated using multilocus sequence typing, antibiotic and antiseptic susceptibility profiles, optical mapping, and whole genome sequencing of historical and recent isolates. RESULTS For 10 years, the rate of bacteremia due to vanB VREfm remained stable and sequence type (ST) 17 was predominant. In 2005, ST203 vancomycin-susceptible E. faecium first appeared at our institution, and from March 2007, coinciding with the appearance of a vanB VREfm ST203, the rate of VRE bacteremia has increased exponentially. Although we found no difference in antiseptic susceptibility or presence of genes encoding putative virulence determinants (esp(Efm), hyl(Efm), and fms genes), comparative genomics revealed almost 500 kb of unique sequence when an ST17 and an ST203 VREfm isolate were compared, suggesting that other genomic factors are responsible for the apparent success of E. faecium. CONCLUSIONS The application of multilocus sequence typing has uncovered the emergence of an epidemic clone of E. faecium ST203 that appears to have acquired the vanB locus and has caused a sustained outbreak of VRE bacteremia.


Antimicrobial Agents and Chemotherapy | 2006

Transfer of Vancomycin Resistance Transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the Gut of Gnotobiotic Mice

Aline Launay; Susan A. Ballard; Paul D. R. Johnson; M. Lindsay Grayson; Thierry Lambert

ABSTRACT The vancomycin resistance vanB2 gene cluster is disseminated worldwide and has been found in phylogenetically remote bacterial genera. The vanB2 operon is part of conjugative transposons Tn1549/Tn5382, but conjugative transposition of these elements has not been demonstrated. We have obtained transfer of a Tn1549-like element (referred to herein as “Tn1549-like”) from Clostridium symbiosum MLG101 to Enterococcus faecium 64/3 and Enterococcus faecalis JH2-2 in the digestive tract of gnotobiotic mice and to E. faecium 64/3 in vitro. Retransfer of Tn1549-like from an E. faecium transconjugant also containing Tn916 to E. faecium BM77 was obtained in vitro, albeit at a very low frequency. Transfer efficiency was found to be both donor and recipient dependent. Pulsed-field gel electrophoresis analysis of total SmaI-digested DNA of 48 transconjugants indicated in 27 instances the acquisition of ca. 34 kb of DNA. Two transconjugants harbored two copies of the transposon. Sequencing of the flanking regions of Tn1549-like in 48 transconjugants revealed 29 integration events in 26 loci in the E. faecium genome, and two hot spots for insertion were identified. Integration of the transposon was associated with the acquisition of 5 (n = 18) or 6 (n = 7) bp of donor DNA or with 5-bp duplications of target DNA in the remaining transconjugants. These data demonstrate functionality of the Tn1549-like element and attest that the transfer of the vanB operon between enterococci and human commensal anaerobes occurs in the intestinal environment.


Antimicrobial Agents and Chemotherapy | 2008

High Rates of Fecal Carriage of Nonenterococcal vanB in both Children and Adults

Maryza Graham; Susan A. Ballard; Elizabeth A. Grabsch; Paul D. R. Johnson; M. L. Grayson

ABSTRACT We examined the rate of fecal carriage of vanB in the absence of cultivable vancomycin-resistant enterococci in three distinct populations (children, community adults, and hemodialysis patients). Nonenterococcal vanB carriage was similarly high in hemodialysis patients (45%) and community adults (63%; P = 0.066) and significantly more common among community adults than children (27%; P = 0.001).


BMC Genomics | 2013

Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium

Margaret M. C. Lam; Torsten Seemann; Nicholas J. Tobias; Honglei Chen; Volker Haring; Robert J. Moore; Susan A. Ballard; Lindsay Grayson; Paul D. R. Johnson; Benjamin P. Howden; Timothy P. Stinear

BackgroundIn this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type.ResultsTo establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays.ConclusionsHere we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium.

Collaboration


Dive into the Susan A. Ballard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge