Susan A. Boackle
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan A. Boackle.
Immunity | 2002
Hong Ji; Koichiro Ohmura; Umar Mahmood; David M. Lee; Frans M. A. Hofhuis; Susan A. Boackle; Kazue Takahashi; V. Michael Holers; Mark Walport; Craig Gerard; Alan Ezekowitz; Michael C. Carroll; Michael B. Brenner; Ralph Weissleder; J. Sjef Verbeek; Véronique Duchatelle; Claude Degott; Christophe Benoist; Diane Mathis
K/BxN T cell receptor transgenic mice are a model of inflammatory arthritis, similar to rheumatoid arthritis. Disease in these animals is focused specifically on the joints but stems from autoreactivity to a ubiquitously expressed antigen, glucose-6-phosphate isomerase (GPI). T and B cells are both required for disease initiation, but anti-GPI immunoglobulins (Igs), alone, can induce arthritis in lymphocyte-deficient recipients. Here, we show that the arthritogenic Igs act through both Fc receptors (in particular, FcgammaRIII) and the complement network (C5a). Surprisingly, the alternative pathway of complement activation is critical, while classical pathway components are entirely dispensable. We suggest that autoimmune disease, even one that is organ specific, can occur when mobilization of an adaptive immune response results in runaway activation of the innate response.
Immunity | 2001
Susan A. Boackle; V. Michael Holers; Xiaojiang S. Chen; Gerda Szakonyi; David R. Karp; Edward K. Wakeland; Laurence Morel
The major murine systemic lupus erythematosus (SLE) susceptibility locus, Sle1, corresponds to three loci independently affecting loss of tolerance to chromatin in the NZM2410 mouse. The congenic interval corresponding to Sle1c contains Cr2, which encodes complement receptors 1 and 2 (CR1/CR2, CD35/CD21). NZM2410/NZW Cr2 exhibits a single nucleotide polymorphism that introduces a novel glycosylation site, resulting in higher molecular weight proteins. This polymorphism, located in the C3d binding domain, reduces ligand binding and receptor-mediated cell signaling. Molecular modeling based on the recently solved CR2 structure in complex with C3d reveals that this glycosylation interferes with receptor dimerization. These data demonstrate a functionally significant phenotype for the NZM2410 Cr2 allele and strongly support its role as a lupus susceptibility gene.
Nature Genetics | 2011
Indra Adrianto; Feng Wen; Amanda Templeton; Graham B. Wiley; Jarrod B. King; Christopher J. Lessard; Jared S. Bates; Yanqing Hu; Jennifer A. Kelly; Kenneth M. Kaufman; Joel M. Guthridge; Marta E. Alarcón-Riquelme; Juan-Manuel Anaya; Sang-Cheol Bae; So-Young Bang; Susan A. Boackle; Elizabeth E. Brown; Michelle Petri; Caroline J. Gallant; Rosalind Ramsey-Goldman; John D. Reveille; Luis M. Vilá; Lindsey A. Criswell; Jeffrey C. Edberg; Barry I. Freedman; Peter K. Gregersen; Gary S. Gilkeson; Chaim O. Jacob; Judith A. James; Diane L. Kamen
Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT>A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10−8, odds ratio = 1.70) and Korean (P = 8.33 × 10−10, odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-κB subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
Journal of Immunology | 2000
Hiroshi Watanabe; Gérard Garnier; Antonella Circolo; Rick A. Wetsel; Phil Ruiz; V. Michael Holers; Susan A. Boackle; Harvey R. Colten; Gary S. Gilkeson
In systemic lupus erythematosus, the renal deposition of complement-containing immune complexes initiates an inflammatory cascade resulting in glomerulonephritis. Activation of the classical complement pathway with deposition of C3 is pathogenic in lupus nephritis. Although the alternative complement pathway is activated in lupus nephritis, its role in disease pathogenesis is unknown. To determine the role of the alternative pathway in lupus nephritis, complement factor B-deficient mice were backcrossed to MRL/lpr mice. MRL/lpr mice develop a spontaneous lupus-like disease characterized by immune complex glomerulonephritis. We derived complement factor B wild-type (B+/+), homozygous knockout (B−/−), and heterozygous (B+/−) MRL/lpr mice. Compared with B+/− or B+/+ mice, MRL/lpr B−/− mice developed significantly less proteinuria, less glomerular IgG deposition, and decreased renal scores as well as lower IgG3 cryoglobulin production and vasculitis. Serum C3 levels were normal in the B−/− mice compared with significantly decreased levels in the other two groups. These results suggest that: 1) factor B plays an important role in the pathogenesis of glomerulonephritis and vasculitis in MRL/lpr mice; and 2) activation of the alternative pathway, either by the amplification loop or by IgA immune complexes, has a prominent effect on serum C3 levels in this lupus model.
Genes and Immunity | 2011
Bahram Namjou; P. H. Kothari; Jennifer A. Kelly; Stuart B. Glenn; Joshua O. Ojwang; Adam Adler; Marta E. Alarcón-Riquelme; Caroline J. Gallant; Susan A. Boackle; Lindsey A. Criswell; Robert P. Kimberly; Elizabeth E. Brown; Jeffrey C. Edberg; Anne M. Stevens; Chaim O. Jacob; Betty P. Tsao; Gary S. Gilkeson; Diane L. Kamen; Joan T. Merrill; Michelle Petri; R. R. Goldman; Luis M. Vilá; J-M Anaya; Timothy B. Niewold; J. Martin; Bernardo A. Pons-Estel; José Mario Sabio; José Luis Callejas; Timothy J. Vyse; S.-C. Bae
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors have a role. Rare mutations in the TREX1 gene, the major mammalian 3′–5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurological condition featuring an inflammatory encephalopathy known as Aicardi–Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls. A total of 40 single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene, were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied, and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case–control association analyses were performed. P-values, false-discovery rate q values, and odds ratios (OR) with 95% confidence intervals (CI) were calculated. The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient, whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (minor allele frequency (MAF)>10%) revealed a relatively common risk haplotype in European SLE patients with neurological manifestations, especially seizures, with a frequency of 58% in lupus cases compared with 45% in normal controls (P=0.0008, OR=1.73, 95% CI=1.25–2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (P=2.99E−13, OR=5.2, 95% CI=3.18–8.56). Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
PLOS Genetics | 2011
Jian Zhao; Hui Wu; Melanie Khosravi; Huijuan Cui; Xiaoxia Qian; Jennifer A. Kelly; Kenneth M. Kaufman; Carl D. Langefeld; Adrienne H. Williams; Mary E. Comeau; Julie T. Ziegler; Miranda C. Marion; Adam Adler; Stuart B. Glenn; Marta E. Alarcón-Riquelme; Bernardo A. Pons-Estel; John B. Harley; Sang-Cheol Bae; So Young Bang; Soo-Kyung Cho; Chaim O. Jacob; Timothy J. Vyse; Timothy B. Niewold; Patrick M. Gaffney; Kathy L. Moser; Robert P. Kimberly; Jeffrey C. Edberg; Elizabeth E. Brown; Graciela S. Alarcón; Michelle Petri
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P meta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P meta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P meta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P meta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Journal of Immunology | 2002
Lihua Bao; Mark Haas; Susan A. Boackle; Damian Kraus; Patrick N. Cunningham; Pierce Park; Jessy J. Alexander; Randall K. Anderson; Kristin K. Culhane; V. Michael Holers; Richard J. Quigg
To investigate the role of complement in lupus nephritis, we used MRL/lpr mice and a transgene overexpressing a soluble complement regulator, soluble CR1-related gene/protein y (sCrry), both systemically and in kidney. Production of sCrry in sera led to significant complement inhibition in Crry-transgenic mice relative to littermate transgene negative controls. This complement inhibition with sCrry conferred a survival advantage to MRL/lpr mice. In a total of 154 animals, 42.5% transgene-negative animals had impaired renal function (blood urea nitrogen > 50 mg/dl) compared with 16.4% mice with the sCrry-producing transgene (p < 0.001). In those animals that died spontaneously, MRL/lpr mice with the sCrry-producing transgene did not die of renal failure, while those without the transgene did (blood urea nitrogen values of 46.6 ± 9 and 122 ± 29 mg/dl in transgene-positive and transgene-negative animals, respectively; p < 0.001). Albuminuria was reduced in those transgenic animals in which sCrry expression was maximally stimulated (urinary albumin/creatinine = 12.4 ± 4.3 and 36.9 ± 7.7 in transgene-positive and transgene-negative animals, respectively; p < 0.001). As expected in the setting of chronic complement inhibition, there was less C3 deposition in glomeruli of sCrry-producing transgenic mice compared with transgene-negative animals. In contrast, there was no effect on glomerular IgG deposition, levels of anti-dsDNA Ab and rheumatoid factor, or spleen weights between the two groups. Thus, long-term complement inhibition reduces renal disease in MRL/lpr mice, which translates into improved survival. MRL/lpr mice in which complement is inhibited still have spontaneous mortality, yet this is not from renal disease.
American Journal of Human Genetics | 2011
Christopher J. Lessard; Indra Adrianto; Jennifer A. Kelly; Kenneth M. Kaufman; Kiely Grundahl; Adam Adler; Adrienne H. Williams; Caroline J. Gallant; Juan-Manuel Anaya; Sang-Cheol Bae; Susan A. Boackle; Elizabeth E. Brown; Deh Ming Chang; Lindsey A. Criswell; Jeffrey C. Edberg; Barry I. Freedman; Peter K. Gregersen; Gary S. Gilkeson; Chaim O. Jacob; Judith A. James; Diane L. Kamen; Robert P. Kimberly; Javier Martin; Joan T. Merrill; Timothy B. Niewold; So Yeon Park; Michelle Petri; Bernardo A. Pons-Estel; Rosalind Ramsey-Goldman; John D. Reveille
Systemic lupus erythematosus (SLE) is considered to be the prototypic autoimmune disease, with a complex genetic architecture influenced by environmental factors. We sought to replicate a putative association at 11p13 not yet exceeding genome-wide significance (p < 5 × 10(-8)) identified in a genome-wide association study (GWAS). Our GWA scan identified two intergenic SNPs located between PDHX and CD44 showing suggestive evidence of association with SLE in cases of European descent (rs2732552, p = 0.004, odds ratio [OR] = 0.78; rs387619, p = 0.003, OR = 0.78). The replication cohort consisted of >15,000 subjects, including 3562 SLE cases and 3491 controls of European ancestry, 1527 cases and 1811 controls of African American (AA) descent, and 1265 cases and 1260 controls of Asian origin. We observed robust association at both rs2732552 (p = 9.03 × 10(-8), OR = 0.83) and rs387619 (p = 7.7 × 10(-7), OR = 0.83) in the European samples with p(meta) = 1.82 × 10(-9) for rs2732552. The AA and Asian SLE cases also demonstrated association at rs2732552 (p = 5 × 10(-3), OR = 0.81 and p = 4.3 × 10(-4), OR = 0.80, respectively). A meta-analysis of rs2732552 for all racial and ethnic groups studied produced p(meta) = 2.36 × 10(-13). This locus contains multiple regulatory sites that could potentially affect expression and functions of CD44, a cell-surface glycoprotein influencing immunologic, inflammatory, and oncologic phenotypes, or PDHX, a subunit of the pyruvate dehydrogenase complex.
Annals of the Rheumatic Diseases | 2013
Kenneth M. Kaufman; Jian Zhao; Jennifer A. Kelly; Travis Hughes; Adam Adler; Elena Sanchez; Joshua O. Ojwang; Carl D. Langefeld; Julie T. Ziegler; Adrienne H. Williams; Mary E. Comeau; Miranda C. Marion; Stuart B. Glenn; Rita M. Cantor; Jennifer M. Grossman; Bevra H. Hahn; Yeong Wook Song; Chack Yung Yu; Judith A. James; Joel M. Guthridge; Elizabeth E. Brown; Graciela S. Alarcón; Robert P. Kimberly; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Michelle Petri; John D. Reveille; Luis M. Vilá; Juan-Manuel Anaya; Susan A. Boackle
Objectives The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE. Methods We fine-mapped ≥136 SNPs in a ∼227 kb region on Xq28, containing IRAK1, MECP2 and seven adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15 783 case-control subjects derived from four different ancestral groups. Results Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at p<5×10−8 with consistent association in subjects with African ancestry. Of these, six SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all four ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest p value in transancestral meta-analysis (pmeta = 1.3×10−27, OR=1.43), and thus was considered to be the most likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (p=0.0012) and healthy controls (p=0.0064). Conclusions These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
Arthritis & Rheumatism | 2012
Elena Sanchez; Astrid Rasmussen; Laura Riba; Eduardo M. Acevedo-Vásquez; Jennifer A. Kelly; Carl D. Langefeld; Adrianne H. Williams; Julie T. Ziegler; Mary E. Comeau; Miranda C. Marion; Ignacio García-De La Torre; Marco A. Maradiaga-Ceceña; Mario H. Cardiel; Jorge A. Esquivel-Valerio; Jacqueline Rodriguez-Amado; José Francisco Moctezuma; Pedro Miranda; Carlos E. Perandones; Cecilia Castel; Hugo A. Laborde; Paula Alba; Jorge Luis Musuruana; I. Annelise Goecke; Juan-Manuel Anaya; Kenneth M. Kaufman; Adam Adler; Stuart B. Glenn; Elizabeth E. Brown; Graciela S. Alarcón; Robert P. Kimberly
OBJECTIVE American Indian-Europeans, Asians, and African Americans have an excess morbidity from systemic lupus erythematosus (SLE) and a higher prevalence of lupus nephritis than do Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and sociodemographic characteristics and clinical features in a large cohort of American Indian-European SLE patients. METHODS A total of 2,116 SLE patients of American Indian-European origin and 4,001 SLE patients of European descent for whom we had clinical data were included in the study. Genotyping of 253 continental ancestry-informative markers was performed on the Illumina platform. Structure and Admixture software were used to determine genetic ancestry proportions of each individual. Logistic regression was used to test the association between genetic ancestry and sociodemographic and clinical characteristics. Odds ratios (ORs) were calculated with 95% confidence intervals (95% CIs). RESULTS The average American Indian genetic ancestry of 2,116 SLE patients was 40.7%. American Indian genetic ancestry conferred increased risks of renal involvement (P < 0.0001, OR 3.50 [95% CI 2.63- 4.63]) and early age at onset (P < 0.0001). American Indian ancestry protected against photosensitivity (P < 0.0001, OR 0.58 [95% CI 0.44-0.76]), oral ulcers (P < 0.0001, OR 0.55 [95% CI 0.42-0.72]), and serositis (P < 0.0001, OR 0.56 [95% CI 0.41-0.75]) after adjustment for age, sex, and age at onset. However, age and sex had stronger effects than genetic ancestry on malar rash, discoid rash, arthritis, and neurologic involvement. CONCLUSION In general, American Indian genetic ancestry correlates with lower sociodemographic status and increases the risk of developing renal involvement and SLE at an earlier age.