Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan A. Charman is active.

Publication


Featured researches published by Susan A. Charman.


Nature | 2004

Identification of an antimalarial synthetic trioxolane drug development candidate

Jonathan L. Vennerstrom; Sarah Arbe-Barnes; Reto Brun; Susan A. Charman; Francis Chi Keung Chiu; Jacques Chollet; Yuxiang Dong; Arnulf Dorn; Daniel Hunziker; Hugues Matile; Kylie Anne McIntosh; Maniyan Padmanilayam; Josefina Santo Tomas; Christian Scheurer; Bernard Scorneaux; Yuanqing Tang; Heinrich Urwyler; Sergio Wittlin; William N. Charman

The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle. Available evidence suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem and proteins (enzymes), one of which—the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)—may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes. However, as a drug class, the artemisinins suffer from chemical (semi-synthetic availability, purity and cost), biopharmaceutical (poor bioavailability and limiting pharmacokinetics) and treatment (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.


Neuron | 2008

Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ

Paul A. Adlard; Robert A. Cherny; David Finkelstein; Elisabeth Gautier; Elysia Robb; Mikhalina Cortes; Irene Volitakis; Xiang Liu; Jeffrey P. Smith; Keyla Perez; Katrina M. Laughton; Qiao-Xin Li; Susan A. Charman; Joseph A. Nicolazzo; Simon Wilkins; Karolina Deleva; Toni Lynch; Gaik Beng Kok; Craig W. Ritchie; Rudolph E. Tanzi; Roberto Cappai; Colin L. Masters; Kevin J. Barnham; Ashley I. Bush

As a disease-modifying approach for Alzheimers disease (AD), clioquinol (CQ) targets beta-amyloid (Abeta) reactions with synaptic Zn and Cu yet promotes metal uptake. Here we characterize the second-generation 8-hydroxy quinoline analog PBT2, which also targets metal-induced aggregation of Abeta, but is more effective as a Zn/Cu ionophore and has greater blood-brain barrier permeability. Given orally to two types of amyloid-bearing transgenic mouse models of AD, PBT2 outperformed CQ by markedly decreasing soluble interstitial brain Abeta within hours and improving cognitive performance to exceed that of normal littermate controls within days. Nontransgenic mice were unaffected by PBT2. The current data demonstrate that ionophore activity, inhibition of in vitro metal-mediated Abeta reactions, and blood-brain barrier permeability are indices that predict a potential disease-modifying drug for AD. The speed of recovery of the animals underscores the acutely reversible nature of the cognitive deficits associated with transgenic models of AD.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria

Susan A. Charman; Sarah Arbe-Barnes; Ian Bathurst; Reto Brun; Michael Campbell; William N. Charman; Francis Chi Keung Chiu; Jacques Chollet; J. Carl Craft; Darren J. Creek; Yuxiang Dong; Hugues Matile; Melanie Maurer; Julia Morizzi; Tien Nguyen; Petros Papastogiannidis; Christian Scheurer; David M. Shackleford; Kamaraj Sriraghavan; Lukas Stingelin; Yuanqing Tang; Heinrich Urwyler; Xiaofang Wang; Karen L. White; Sergio Wittlin; Lin Zhou; Jonathan L. Vennerstrom

Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC50 values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghei-infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe(II)-reactivity to elicit parasite death.


Journal of Pharmaceutical Sciences | 2000

Lymphatic transport of proteins after subcutaneous administration

Christopher J. H. Porter; Susan A. Charman

This mini-review summarizes the relevant literature regarding the lymphatic transport of proteins after subcutaneous administration. A review of the physiology of the lymphatics and inherent anatomical differences between blood and lymph capillaries is presented followed by a brief overview of the general characteristics of protein absorption and bioavailability following S.C. injection. A description of factors known to directly affect the lymphatic uptake of macromolecules follows and is supported by representative data from this laboratory. A brief perspective on the importance of lymphatic uptake and transport in understanding the biopharmaceutical properties of protein drugs and potentially targeting the lymphatics is presented.


Science Translational Medicine | 2013

Quinolone-3-Diarylethers: A New Class of Antimalarial Drug

Aaron Nilsen; Alexis N. LaCrue; Karen L. White; Isaac P. Forquer; R. Matthew Cross; Jutta Marfurt; Michael W. Mather; Michael J. Delves; David M. Shackleford; Fabián E. Sáenz; Joanne M. Morrisey; Jessica Steuten; Tina Mutka; Yuexin Li; Grennady Wirjanata; Eileen Ryan; Sandra Duffy; Jane Xu Kelly; Boni F. Sebayang; Anne-Marie Zeeman; Rintis Noviyanti; Robert E. Sinden; Clemens H. M. Kocken; Ric N. Price; Vicky M. Avery; Iñigo Angulo-Barturen; María Belén Jiménez-Díaz; Santiago Ferrer; Esperanza Herreros; Laura Sanz

ELQ-300, an investigational drug for treating and preventing malaria, shows potent transmission-blocking activity in rodent models of malaria. Taking the Bite Out of Malaria Malaria is spread from person to person by mosquitoes that inject 8 to 10 sporozoite forms of the parasite in a single bite. The sporozoites reproduce in the liver to produce 10,000 to 30,000 merozoites before the liver schizont ruptures and parasites flood into the bloodstream where the absolute parasite burden may increase to a thousand billion (1012) circulating parasites. Some of these parasites develop into gametocytes that may be ingested by another mosquito where they progress through ookinete, oocyst, and sporozoite stages to complete the cycle. Like quinine, most antimalarial drugs in use today target only the symptomatic blood stage. The efficacy of these drugs has been compromised by resistance, and so there is a pressing need for new drugs that target multiple stages of the parasite life cycle for use in malaria treatment and prevention. Clearly, it is advantageous to strike at the liver stage where parasite numbers are low, to diminish the likelihood of selecting for a resistant mutant and before the infection has a chance to weaken the defenses of the human host. In a new study, Nilsen and colleagues describe ELQ-300, a 4(1H)-quinolone-3-diarylether, which targets the liver and blood stages, including the forms that are crucial to disease transmission (gametocytes, zygotes, and ookinetes). In mouse models of malaria, a single oral dose of 0.03 mg/kg prevented sporozoite-induced infections, whereas four daily doses of 1 mg/kg achieved complete cures of patent infections. ELQ-300 is a preclinical candidate that may be coformulated with other antimalarials to prevent and treat malaria, with the potential to aid in eradication of the disease. The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite’s life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite’s mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.


Journal of Medicinal Chemistry | 2011

Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential

José M. Coterón; Maria Marco; Jorge Esquivias; Xiaoyi Deng; Karen L. White; John White; Maria Koltun; Farah El Mazouni; Sreekanth Kokkonda; Kasiram Katneni; Ravi K. Bhamidipati; David M. Shackleford; Iñigo Angulo-Barturen; Santiago Ferrer; María Belén Jiménez-Díaz; Francisco Javier Gamo; Elizabeth J. Goldsmith; William N. Charman; Ian Bathurst; David M. Floyd; David Matthews; Jeremy N. Burrows; Pradipsinh K. Rathod; Susan A. Charman; Margaret A. Phillips

Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.


Pharmaceutical Research | 1993

Techniques for Assessing the Effects of Pharmaceutical Excipients on the Aggregation of Porcine Growth Hormone

Susan A. Charman; Kaye L. Mason; William N. Charman

Three denaturing techniques have been evaluated for their ability to induce irreversible aggregation and precipitation of recombinant porcine growth hormone (pGH). The denaturing stimuli included thermal denaturation, interfacial denaturation through the introduction of a high air/water interface by vortex agitation, and a guanidine (Gdn) HC1 technique which involved rapid dilution of a partially unfolded state of pGH to nondenaturing conditions. Soluble and insoluble pGH fractions were evaluated for the presence of covalently modified species and soluble aggregates by size exclusion chromatography (SEC), sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF). In each of the three denaturation methods, precipitation was found to be irreversible, as the precipitated pellet could not be solubilized upon resuspending in buffer. The soluble pGH fractions consisted of only monomeric material and the insoluble protein pellet could be completely solubilized with Gdn HC1 or SDS. There was no evidence of detectable covalent modifications in the precipitated protein pellet following any of the three denaturation techniques. Three excipients, Tween 20, hydroxypropyl-β-cyclodextrin (HPCD), and sorbitol were evaluated for their stabilizing ability using each of the three denaturation methods and the degree of stabilization was found to be dependent upon the denaturing stimulus incorporated. Tween 20 was found to be highly effective in preventing pGH precipitation using the interfacial and Gdn techniques and was moderately effective using the thermal denaturation method. Inclusion of HPCD in the sample buffer significantly reduced precipitation using the thermal and interfacial methods but was ineffective in the Gdn technique. In contrast, sorbitol was ineffective in the interfacial technique and only moderately effective at high concentrations in reducing Gdn- and thermally-induced precipitation. These studies demonstrate the need to consider the nature of the denaturing stimulus when evaluating the potential protein-stabilizing properties of different pharmaceutical excipients.


Nature | 2015

A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Journal of Medicinal Chemistry | 2009

Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice.

Ramesh Gujjar; Alka Marwaha; Farah El Mazouni; John Kenneth White; Karen L. White; Sharon A. Creason; David M. Shackleford; Jeffrey Baldwin; William N. Charman; Frederick S. Buckner; Susan A. Charman; Pradip Rathod; Margaret A. Phillips

Plasmodium falciparum causes 1-2 million deaths annually. Yet current drug therapies are compromised by resistance. We previously described potent and selective triazolopyrimidine-based inhibitors of P. falciparum dihydroorotate dehydrogenase (PfDHODH) that inhibited parasite growth in vitro; however, they showed no activity in vivo. Here we show that lack of efficacy against P. berghei in mice resulted from a combination of poor plasma exposure and reduced potency against P. berghei DHODH. For compounds containing naphthyl (DSM1) or anthracenyl (DSM2), plasma exposure was reduced upon repeated dosing. Phenyl-substituted triazolopyrimidines were synthesized leading to identification of analogs with low predicted metabolism in human liver microsomes and which showed prolonged exposure in mice. Compound 21 (DSM74), containing p-trifluoromethylphenyl, suppressed growth of P. berghei in mice after oral administration. This study provides the first proof of concept that DHODH inhibitors can suppress Plasmodium growth in vivo, validating DHODH as a new target for antimalarial chemotherapy.


Science Translational Medicine | 2015

A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria

Margaret A. Phillips; Julie Lotharius; Kennan Marsh; John White; Anthony Dayan; Karen L. White; Jacqueline W. Njoroge; Farah El Mazouni; Yanbin Lao; Sreekanth Kokkonda; Diana R. Tomchick; Xiaoyi Deng; Trevor Laird; Sangeeta N. Bhatia; Sandra March; Caroline L. Ng; David A. Fidock; Sergio Wittlin; Maria J. Lafuente-Monasterio; Francisco Javier Gamo–Benito; Laura Maria Sanz Alonso; María Santos Martínez; María Belén Jiménez-Díaz; Santiago Ferrer Bazaga; Iñigo Angulo-Barturen; John N. Haselden; James Louttit; Yi Cui; Arun Sridhar; Anna Marie Zeeman

The antimalarial drug DSM265 displays activity against blood and liver stages of Plasmodium falciparum and has a long predicted half-life in humans. Long-acting new treatment for drug-resistant malaria Malaria kills 0.6 million people annually, yet current malaria drugs are no longer fully effective because the parasite that causes malaria is becoming resistant to these agents. Phillips et al. have identified a new drug that kills both drug-sensitive and drug-resistant malaria parasites by targeting the ability of the parasite to synthesize the nucleotide precursors required for synthesis of DNA and RNA. This drug kills parasites in both the blood and liver and is sufficiently long-acting that it is expected to cure malaria after a single dose or to be effective if dosed weekly for chemoprevention. Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.

Collaboration


Dive into the Susan A. Charman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Wittlin

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Vennerstrom

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxiang Dong

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge