Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan B. Olson is active.

Publication


Featured researches published by Susan B. Olson.


Nature | 2003

Cell fusion is the principal source of bone-marrow-derived hepatocytes.

Xin Wang; Holger Willenbring; Yassmine Akkari; Yumi Torimaru; Mark Foster; Muhsen Al-Dhalimy; Eric Lagasse; Milton J. Finegold; Susan B. Olson; Markus Grompe

Evidence suggests that haematopoietic stem cells might have unexpected developmental plasticity, highlighting therapeutic potential. For example, bone-marrow-derived hepatocytes can repopulate the liver of mice with fumarylacetoacetate hydrolase deficiency and correct their liver disease. To determine the underlying mechanism in this murine model, we performed serial transplantation of bone-marrow-derived hepatocytes. Here we show by Southern blot analysis that the repopulating hepatocytes in the liver were heterozygous for alleles unique to the donor marrow, in contrast to the original homozygous donor cells. Furthermore, cytogenetic analysis of hepatocytes transplanted from female donor mice into male recipients demonstrated 80,XXXY (diploid to diploid fusion) and 120,XXXXYY (diploid to tetraploid fusion) karyotypes, indicative of fusion between donor and host cells. We conclude that hepatocytes derived form bone marrow arise from cell fusion and not by differentiation of haematopoietic stem cells.


Molecular Cell | 2001

Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2

Cynthia Timmers; Toshiyasu Taniguchi; James Hejna; Carol Reifsteck; Lora Lucas; Donald A. Bruun; Matthew Thayer; Barbara Cox; Susan B. Olson; Alan D. D'Andrea; Robb E. Moses; Markus Grompe

Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.


Nature Medicine | 2004

Myelomonocytic cells are sufficient for therapeutic cell fusion in liver

Holger Willenbring; Alexis S. Bailey; Mark Foster; Yassmine Akkari; Craig Dorrell; Susan B. Olson; Milton J. Finegold; William H. Fleming; Markus Grompe

Liver repopulation with bone marrow–derived hepatocytes (BMHs) can cure the genetic liver disease fumarylacetoacetate hydrolase (Fah) deficiency. BMHs emerge from fusion between donor bone marrow–derived cells and host hepatocytes. To use such in vivo cell fusion efficiently for therapy requires knowing the nature of the hematopoietic cells that fuse with hepatocytes. Here we show that the transplantation into Fah−/− mice of hematopoietic stem cells (HSCs) from lymphocyte-deficient Rag1−/− mice, lineage-committed granulocyte-macrophage progenitors (GMPs) or bone marrow–derived macrophages (BMMs) results in the robust production of BMHs. These results provide direct evidence that committed myelomonocytic cells such as macrophages can produce functional epithelial cells by in vivo fusion. Because stable bone marrow engraftment or HSCs are not required for this process, macrophages or their highly proliferative progenitors provide potential for targeted and well-tolerated cell therapy aimed at organ regeneration.


Nature | 2010

The ploidy-conveyor of mature hepatocytes as a source of genetic variation

Andrew W. Duncan; Matthew H. Taylor; Raymond D. Hickey; Amy Hanlon Newell; Michelle L. Lenzi; Susan B. Olson; Milton J. Finegold; Markus Grompe

Mononucleated and binucleated polyploid hepatocytes (4n, 8n, 16n and higher) are found in all mammalian species, but the functional significance of this conserved phenomenon remains unknown. Polyploidization occurs through failed cytokinesis, begins at weaning in rodents and increases with age. Previously, we demonstrated that the opposite event, ploidy reversal, also occurs in polyploid hepatocytes generated by artificial cell fusion. This raised the possibility that somatic ‘reductive mitoses’ can also happen in normal hepatocytes. Here we show that multipolar mitotic spindles form frequently in mouse polyploid hepatocytes and can result in one-step ploidy reversal to generate offspring with halved chromosome content. Proliferating hepatocytes produce a highly diverse population of daughter cells with multiple numerical chromosome imbalances as well as uniparental origins. Our findings support a dynamic model of hepatocyte polyploidization, ploidy reversal and aneuploidy, a phenomenon that we term the ‘ploidy conveyor’. We propose that this mechanism evolved to generate genetic diversity and permits adaptation of hepatocytes to xenobiotic or nutritional injury.


Molecular and Cellular Biology | 2000

DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links.

Yassmine Akkari; Raynard L. Bateman; Carol Reifsteck; Susan B. Olson; Markus Grompe

ABSTRACT Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G2/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G1, S, and G2 cells were treated with photoactivated 4′-hydroxymethyl-4,5′,8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G2 did not result in a G2/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G1 did not cause a G1/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to ∼2,500 ICLs/genome at an average rate of 11 ICLs/genome/h.


Journal of Clinical Investigation | 2009

Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation

Sophia Bornstein; Ruth White; Stephen P. Malkoski; Masako Oka; Gangwen Han; Timothy G. Cleaver; Douglas Reh; Peter E. Andersen; Neil D. Gross; Susan B. Olson; Chu-Xia Deng; Shi-Long Lu; Xiao-Jing Wang

Smad4 is a central mediator of TGF-beta signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4-/- mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited severe inflammation, which was associated with increased expression of TGF-beta1 and activated Smad3. We present what we believe to be the first single gene-knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation.


Leukemia | 2003

Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate

Michael E. O'Dwyer; K M Gatter; Marc Loriaux; Brian J. Druker; Susan B. Olson; R E Magenis; Helen Lawce; Michael J. Mauro; Richard T. Maziarz; Rita M. Braziel

Imatinib mesylate, an Abl-specific kinase inhibitor, produces sustained complete hematologic responses (CHR) and major cytogenetic responses (MCR) in chronic myeloid leukemia (CML) patients, but long-term outcomes in these patients are not yet known. This article reports the identification of clonal abnormalities in cells lacking detectable Philadelphia (Ph) chromosome/BCR–ABL rearrangements from seven patients with chronic- or accelerated-phase CML, who were treated with imatinib. All seven patients were refractory or intolerant to interferon therapy. Six of seven patients demonstrated MCR and one patient, who had a cryptic translocation, achieved low-level positivity (2.5%) for BCR–ABL by fluorescence in situ hybridization. The median duration of imatinib treatment before the identification of cytogenetic abnormalities in BCR–ABL-negative cells was 13 months. The most common cytogenetic abnormality was trisomy 8, documented in three patients. All patients had varying degrees of dysplastic morphologic abnormalities. One patient exhibited increased numbers of marrow blasts, yet consistently demonstrated no Ph-positive metaphases and the absence of morphologic features of CML. The presence of clonal abnormalities in Ph-negative cells of imatinib-treated CML patients with MCR and CHR highlights the importance of routine metaphase cytogenetic testing and long-term follow-up of all imatinib-treated patients.


Journal of Biological Chemistry | 2008

Role for DNA Polymerase κ in the Processing of N2-N2-Guanine Interstrand Cross-links

Irina G. Minko; Michael B. Harbut; Ivan D. Kozekov; Albena Kozekova; Petra M. Jakobs; Susan B. Olson; Robb E. Moses; Thomas M. Harris; Carmelo J. Rizzo; R. Stephen Lloyd

Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N2-guanines, similar to cross-links formed by mitomycin C and enals. Here, data are presented that mammalian cell replication of DNAs containing these lesions was ∼97% accurate. Using a series of oligodeoxynucleotides that mimic potential intermediates in ICL repair, we demonstrate that human polymerase (pol) κ not only catalyzed accurate incorporation opposite the cross-linked guanine but also replicated beyond the lesion, thus providing the first biochemical evidence for TLS past an ICL. The efficiency of TLS was greatly enhanced by truncation of both the 5 ′ and 3 ′ ends of the nontemplating strand. Further analyses showed that although yeast Rev1 could incorporate a dCTP opposite the cross-linked guanine, no evidence was found for TLS by pol ζ or a pol ζ/Rev1 combination. Because pol κ was able to bypass these ICLs, biological evidence for a role for pol κ in tolerating the N2-N2-guanine ICLs was sought; both cell survival and chromosomal stability were adversely affected in pol κ-depleted cells following mitomycin C exposure. Thus, biochemical data and cellular studies both suggest a role for pol κ in the processing of N2-N2-guanine ICLs.


Gastroenterology | 2012

Frequent aneuploidy among normal human hepatocytes.

Andrew W. Duncan; Amy Hanlon Newell; Leslie Smith; Elizabeth M. Wilson; Susan B. Olson; Matthew Thayer; Stephen C. Strom; Markus Grompe

Murine hepatocytes become polyploid and then undergo ploidy reversal and become aneuploid in a dynamic process called the ploidy conveyor. Although polyploidization occurs in some types of human cells, the degree of aneuploidy in human hepatocytes is not known. We isolated hepatocytes derived from healthy human liver samples and determined chromosome number and identity using traditional karyotyping and fluorescence in situ hybridization. Similar to murine hepatocytes, human hepatocytes are highly aneuploid. Moreover, imaging studies revealed multipolar spindles and chromosome segregation defects in dividing human hepatocytes. Aneuploidy therefore does not necessarily predispose liver cells to transformation but might promote genetic diversity among hepatocytes.


Journal of Clinical Investigation | 2012

Aneuploidy as a mechanism for stress-induced liver adaptation

Andrew W. Duncan; Amy Hanlon Newell; Weimin Bi; Milton J. Finegold; Susan B. Olson; Arthur L. Beaudet; Markus Grompe

Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.

Collaboration


Dive into the Susan B. Olson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge