Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Bove is active.

Publication


Featured researches published by Susan Bove.


Toxicologic Pathology | 2003

Mono-Iodoacetate-Induced Histologic Changes in Subchondral Bone and Articular Cartilage of Rat Femorotibial Joints: An Animal Model of Osteoarthritis

Roberto E. Guzman; Mark Evans; Susan Bove; Brandy Morenko; Kenneth S. Kilgore

Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain and a progressive loss of articular cartilage. Studies to elucidate the pathophysiology of OA have been hampered by the lack of a rapid, reproducible animal model that mimics both the histopathology and symptoms associated with the disease. Injection of mono-iodoacetate (MIA), an inhibitor of glycolysis, into the femorotibial joint of rodents promotes loss of articular cartilage similar to that noted in human OA. Here, we describe the histopathology in the subchondral bone and cartilage of rat (Wistar) knee joints treated with a single intra articular injection of MIA (1 mg) and sacrificed at 1, 3, 5, 7, 14, 28, and 56 days postinjection. Histologically, the early time points (days 1—7) were characterized by areas of chondrocyte degeneration/necrosis sometimes involving the entire thickness of the articular cartilage in the tibial plateaus and femoral condyles. Changes to the subchondral bone, as evidenced by increased numbers of osteoclasts and osteoblasts, were noted at by day 7. By 28 days, there was focal fragmentation and collapse of bony trabeculae with fibrosis and increased osteoclastic activity. By 56 days there were large areas of bone remodeling evidenced by osteoclastic bone resorption and newly formed trabeculae with loss of marrow hematopoietic cells. Subchondral cysts and subchondral sclerosis were present in some rats. In conclusion, intra-articular injection of MIA induces loss of articular cartilage with progression of subchondral bone lesions that mimic those of OA. This model offers a rapid and minimally invasive method to reproduce OA-like lesions in a rodent species.


Journal of Pharmacology and Experimental Therapeutics | 2011

Chronic Suppression of Phosphodiesterase 10A Alters Striatal Expression of Genes Responsible for Neurotransmitter Synthesis, Neurotransmission, and Signaling Pathways Implicated in Huntington's Disease

Robin J. Kleiman; Lida H. Kimmel; Susan Bove; Thomas A. Lanz; John F. Harms; Alison Romegialli; Kenneth S Miller; Amy Willis; Shelley G. des Etages; Max Kuhn; Christopher J. Schmidt

Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntingtons disease.


Brain Research Reviews | 2009

New advances in musculoskeletal pain

Susan Bove; Sarah J.L. Flatters; Julia J. Inglis; Patrick W. Mantyh

Non-malignant musculoskeletal pain is the most common clinical symptom that causes patients to seek medical attention and is a major cause of disability in the world. Musculoskeletal pain can arise from a variety of common conditions including osteoarthritis, rheumatoid arthritis, osteoporosis, surgery, low back pain and bone fracture. A major problem in designing new therapies to treat musculoskeletal pain is that the underlying mechanisms driving musculoskeletal pain are not well understood. This lack of knowledge is largely due to the scarcity of animal models that closely mirror the human condition which would allow the development of a mechanistic understanding and novel therapies to treat this pain. To begin to develop a mechanism-based understanding of the factors involved in generating musculoskeletal pain, in this review we present recent advances in preclinical models of osteoarthritis, post-surgical pain and bone fracture pain. The models discussed appear to offer an attractive platform for understanding the factors that drive this pain and the preclinical screening of novel therapies to treat musculoskeletal pain. Developing both an understanding of the mechanisms that drive persistent musculoskeletal pain and novel mechanism-based therapies to treat these unique pain states would address a major unmet clinical need and have significant clinical, economic and societal benefits.


Journal of Pharmacological and Toxicological Methods | 2008

Use of a portable thermal imaging unit as a rapid, quantitative method of evaluating inflammation and experimental arthritis

Brian Sanchez; Mark E. Lesch; David Brammer; Susan Bove; Melissa Thiel; Kenneth S. Kilgore

INTRODUCTION Thermal imaging has been utilized, both preclinically and clinically, as a tool for assessing inflammation and arthritis. However, previous studies have employed large, relatively immobile devises to obtain the thermal signature of the tissue of interest. The present study describes the characterization of a hand-held thermal imaging device in a preclinical model of general inflammation and a model of rheumatoid arthritis (RA). METHODS A hand-held ThermoView Ti30 portable thermal imager was utilized to detect the temporal changes in thermal signatures in rat model of carrageenan-induced paw edema (CFE) and a model of collagen-induced arthritis (CIA). In both in vivo models, the kinetics of the thermal changes were correlated to footpad swelling. In addition, the CFE model was utilized to examine the ability of this technology to delineate pharmacodynamic changes in thermal signature in response to the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg; p.o.). RESULTS Thermal analysis of rat paws in the CFE model demonstrated a significant increase in the mean temperature difference between the inflamed and contralateral control paw by two hours post-carrageenan (8.3 +/-0.5 degrees F). Indomethacin significantly decreased the mean temperature difference in treated animals as compared to vehicle. In the rat CIA model, increases in footpad temperature, as determined by thermal imaging, were significantly elevated by Day 11 and remained elevated throughout the duration of the 28 day protocol. Thermal changes were also found to precede increases in footpad edema (swelling). DISCUSSION The results of this study demonstrate that the hand-held thermal imaging technology represents a rapid, highly-reproducible method by which to quantitate the degree of inflammation in rat models of general inflammation and rheumatoid arthritis. The ability to detect pharmacodynamic responses in paw temperature suggests that this technology may be a useful tool for the development of pharmacologic interventions for the treatment inflammation-related pathologies.


Toxicologic Pathology | 2005

Anatomical Localization of Cartilage Degradation Markers in a Surgically Induced Rat Osteoarthritis Model

Lyn M. Wancket; Vijay Baragi; Susan Bove; Kenneth S. Kilgore; Peter J. Korytko; Roberto E. Guzman

Osteoarthritis (OA) is a degenerative disease characterized by an irreversible loss of articular cartilage. Although surgically induced animal OA models are commonly used in drug efficacy assessment, degradation of type II collagen, an important component of articular cartilage is not routinely evaluated. Here, the medial meniscectomy surgical model (MMT) in Lewis rats was evaluated for proteoglycan loss with toluidine blue staining and collagen degradation with immunohistochemical staining for a collagen cleavage C-neoepitope, using a novel anti-type II collagen neoepitope antigen (TIINE) antibody. Femorotibial joints were collected for histology at 0 (no surgery), 3, 7, 14, 21, 28, 35, and 42 days postsurgery. Following MMT surgery, the medial tibial articular cartilage had proteoglycan matrix loss by day 3 that reached subchondral bone by days 28–42. Femoral cartilage damage occurred by day 14. TIINE staining was present at basal levels in growth plates and articular cartilage of all joints while all MMT-treated animals had increased intensity and area of staining in erosions that colocalized with proteoglycan loss. The MMT model produces a progressive pattern of cartilage damage resembling human OA lesions, making it useful, when evaluated with cartilage biomarkers, for assessing changes in cartilage degradation.


Biomarkers | 2012

Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

Thomas A. Lanz; Susan Bove; Catherine D. Pilsmaker; Abigail Mariga; Elena M. Drummond; Gregory W. Cadelina; Wendy O. Adamowicz; Brentt J. Swetter; Sharon Carmel; Jo Ann Dumin; Robin J. Kleiman

Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model, Part I: Transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors.

Mark Stephen Plummer; Joseph A. Cornicelli; Howard Roark; Donald James Skalitzky; Charles Stankovic; Susan Bove; Jayvardhan Pandit; Annise Paige Goodman; James Lester Hicks; Aurash Shahripour; David Beidler; Xiao Kang Lu; Brian Sanchez; Christopher Whitehead; Ron Sarver; Timothy Braden; Richard Gowan; Xi Qiang Shen; Katherine Welch; Adam Ogden; Nalini Sadagopan; Heidi Baum; Howard Miller; Craig Banotai; Cindy Spessard; Sandra Lightle

We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: optimization studies and demonstration of in vivo efficacy.

Mark Stephen Plummer; Joseph A. Cornicelli; Howard Roark; Donald James Skalitzky; Charles Stankovic; Susan Bove; Jayvardhan Pandit; Annise Paige Goodman; James Lester Hicks; Aurash Shahripour; David Beidler; Xiao Kang Lu; Brian Sanchez; Christopher Whitehead; Ron Sarver; Timothy Braden; Richard Gowan; Xi Qiang Shen; Katherine Welch; Adam Ogden; Nalini Sadagopan; Heidi Baum; Howard Miller; Craig Banotai; Cindy Spessard; Sandra Lightle

Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F=78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3h after a single, 10 mg/kg, subcutaneous dose.


medical image computing and computer assisted intervention | 2010

In vivo MRI assessment of knee cartilage in the medial meniscal tear model of osteoarthritis in rats

Zhiyong Xie; Serguei Liachenko; Ping-Chun Chiao; Santos Carvajal-Gonzalez; Susan Bove; Thomas Bocan

We present a new approach for quantifying the degradation of knee cartilage in the medial meniscal tear (MMT) model of osteoarthritis in the rat. A statistical strategy was used to guide the selection of a region of interest (ROI) from the images obtained from a pilot study. We hypothesize that this strategy can be used to localize a region of cartilage most vulnerable to MMT-induced damage. In order to test this hypothesis, a longitudinal study was conducted in which knee cartilage thickness in a pre-selected ROI was monitored for three weeks and comparisons were made between MMT and control rats. We observed a significant decrease in cartilage thickness in MMT rats and a significant increase in cartilage thickness in sham-operated rats as early as one week post surgery when compared to pre-surgery measurements.


Restorative Neurology and Neuroscience | 2013

Immunohistochemical characterization of axonal sprouting in mice.

Erin J. Feeney; Diane Stephenson; Robin J. Kleiman; Susan Bove; Courtney Cron; Lara Moody; Mercedes Robinson; Julio J. Ramirez

PURPOSE Transgenic manipulation of mouse physiology facilitates the preclinical study of genetic risk factors, neural plasticity, and reactive processes accompanying Alzheimers disease. Alternatively, entorhinal cortex lesions (ECLs) model pathophysiological denervation and axonal sprouting in rat. Given reports of anatomical differences between the mouse and rat hippocampus, application of the ECL paradigm to transgenic mice first requires comprehensive characterization of axonal sprouting in the wild-type. METHODS Adult male C57BL/6 mice sustained unilateral transections of the perforant pathway. Subjects were sacrificed at 1, 4, 10, 18, and 28 days postlesion, and hippocampal sections were stained for AChE, the postsynaptic terminal marker drebrin, and the presynaptic terminal proteins SNAP-25, GAP-43, synapsin, and synaptophysin. To examine synaptic turnover and reinnervation, ipsilateral-to-contralateral staining densities were determined within the dentate molecular layer, and shrinkage-corrected ratios were compared to 28 day-yoked sham cases. RESULTS At 28 days postlesion, ipsilateral terminal marker densities exhibited significant depression. In contrast, qualitative analyses at earlier time points suggested altered AChE staining patterns and increased SNAP-25 and synapsin immunoreactivity in the inner molecular layer (IML) of the dentate gyrus. CONCLUSIONS C57BL/6 mice exhibit synaptic reorganization following perforant path transections. The IML may provide a key target for evaluation and intervention in ECL mouse models.

Researchain Logo
Decentralizing Knowledge