Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan C. Antón is active.

Publication


Featured researches published by Susan C. Antón.


Science | 1996

Latest Homo erectus of Java: Potential Contemporaneity with Homo sapiens in Southeast Asia

Carl C. Swisher; W. J. Rink; Susan C. Antón; Henry P. Schwarcz; G. H. Curtis; A. Suprijo Widiasmoro

Hominid fossils from Ngandong and Sambungmacan, Central Java, are considered the most morphologically advanced representatives of Homo erectus. Electron spin resonance (ESR) and mass spectrometric U-series dating of fossil bovid teeth collected from the hominid-bearing levels at these sites gave mean ages of 27 ± 2 to 53.3 ± 4 thousand years ago; the range in ages reflects uncertainties in uranium migration histories. These ages are 20,000 to 400,000 years younger than previous age estimates for these hominids and indicate that H. erectus may have survived on Java at least 250,000 years longer than on the Asian mainland, and perhaps 1 million years longer than in Africa. The new ages raise the possibility that H. erectus overlapped in time with anatomically modern humans (H. sapiens) in Southeast Asia.


Nature | 2007

Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya

Fed Spoor; Meave Leakey; P Gathogo; F H Brown; Susan C. Antón; Ian McDougall; Christopher Kiarie; Fredrick Kyalo Manthi; Louise N. Leakey

Sites in eastern Africa have shed light on the emergence and early evolution of the genus Homo. The best known early hominin species, H. habilis and H. erectus, have often been interpreted as time-successive segments of a single anagenetic evolutionary lineage. The case for this was strengthened by the discovery of small early Pleistocene hominin crania from Dmanisi in Georgia that apparently provide evidence of morphological continuity between the two taxa. Here we describe two new cranial fossils from the Koobi Fora Formation, east of Lake Turkana in Kenya, that have bearing on the relationship between species of early Homo. A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely. The discovery of a particularly small calvaria of H. erectus indicates that this taxon overlapped in size with H. habilis, and may have shown marked sexual dimorphism. The new fossils confirm the distinctiveness of H. habilis and H. erectus, independently of overall cranial size, and suggest that these two early taxa were living broadly sympatrically in the same lake basin for almost half a million years.


Science | 2014

Evolution of early Homo: An integrated biological perspective

Susan C. Antón; Richard Potts; Leslie C. Aiello

Background Until recently, the evolution of the genus Homo has been interpreted in the context of the onset of African aridity and the expansion of open grasslands. Homo erectus was considered to be a bona fide member of the genus Homo, but opinions diverged on the generic status of earlier, more fragmentary fossils traditionally attributed to Homo habilis and Homo rudolfensis. Arguments about generic status of these taxa rested on inferred similarities and differences in adaptive plateau. However, there was near-universal agreement that the open-country suite of features inferred for Homo erectus had evolved together and provided the adaptations for dispersal beyond Africa. These features foreshadowed those of more recent Homo sapiens and included large, linear bodies, elongated legs, large brain sizes, reduced sexual dimorphism, increased carnivory, and unique life history traits (e.g., extended ontogeny and longevity) as well as toolmaking and increased social cooperation. Hominin evolution from 3.0 to 1.5 Ma. (Species) Currently known species temporal ranges for Pa, Paranthropus aethiopicus; Pb, P. boisei; Pr, P. robustus; A afr, Australopithecus africanus; Ag, A. garhi; As, A. sediba; H sp., early Homo >2.1 million years ago (Ma); 1470 group and 1813 group representing a new interpretation of the traditionally recognized H. habilis and H. rudolfensis; and He, H. erectus. He (D) indicates H. erectus from Dmanisi. (Behavior) Icons indicate from the bottom the first appearance of stone tools (the Oldowan technology) at ~2.6 Ma, the dispersal of Homo to Eurasia at ~1.85 Ma, and the appearance of the Acheulean technology at ~1.76 Ma. The number of contemporaneous hominin taxa during this period reflects different strategies of adaptation to habitat variability. The cultural milestones do not correlate with the known first appearances of any of the currently recognized Homo taxa. Advances Over the past decade, new fossil discoveries and new lines of interpretation have substantially altered this interpretation. New environmental data sets suggest that Homo evolved against a background of long periods of habitat unpredictability that were superimposed on the underlying aridity trend. New fossils support the presence of multiple groups of early Homo that overlap in body, brain, and tooth size and challenge the traditional interpretation of H. habilis and H. rudolfensis as representing small and large morphs, respectively. Because of a fragmentary and distorted type specimen for H. habilis two informal morphs are proposed, the 1813 group and the 1470 group, that are distinguished on the basis of facial anatomy but do not contain the same constituent fossils as the more formally designated species of early Homo. Furthermore, traits once thought to define early Homo, particularly H. erectus, did not arise as a single package. Some features once considered characteristic of Homo are found in Australopithecus (e.g., long hind limbs), whereas others do not occur until much later in time (e.g., narrow pelves and extended ontogeny). When integrated with our understanding of the biology of living humans and other mammals, the fossil and archaeological record of early Homo suggests that key factors to the success and expansion of the genus rested on dietary flexibility in unpredictable environments, which, along with cooperative breeding and flexibility in development, allowed range expansion and reduced mortality risks. Outlook Although more fossils and archaeological finds will continue to enhance our understanding of the evolution of early Homo, the comparative biology of mammals (including humans) will continue to provide valuable frameworks for the interpretation of existing material. This comparative context enables us to formulate and test robust models of the relationships between energetics, life history, brain and body size, diet, mortality, and resource variability and thereby yield a deeper understanding of human evolution. Pleistocene people and environments In the past few decades, hundreds of hominin fossils have been recovered from well-dated sites in East Africa. In addition, early representatives from far outside Africa have been found in Asia and Europe. Recently, discoveries at Malapa in South Africa and at Dmanisi in western Asia have brought important new fossils and archaeological residues to light. Analyses of local stratigraphy, windblown dust, sea and lake cores, and stable isotopic analyses have improved the reconstruction of ancient environments inhabited by early humans. Antón et al. review recent evidence and arguments about the evolution of early Homo, arguing that habitat instability and fragmentation imposed an important selective force. Science, this issue p. 10.1126/science.1236828 Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.


Nature | 2012

New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo

Meave G. Leakey; Fred Spoor; M. Christopher Dean; Craig S. Feibel; Susan C. Antón; Christopher Kiarie; Louise N. Leakey

Since its discovery in 1972 (ref. 1), the cranium KNM-ER 1470 has been at the centre of the debate over the number of species of early Homo present in the early Pleistocene epoch of eastern Africa. KNM-ER 1470 stands out among other specimens attributed to early Homo because of its larger size, and its flat and subnasally orthognathic face with anteriorly placed maxillary zygomatic roots. This singular morphology and the incomplete preservation of the fossil have led to different views as to whether KNM-ER 1470 can be accommodated within a single species of early Homo that is highly variable because of sexual, geographical and temporal factors, or whether it provides evidence of species diversity marked by differences in cranial size and facial or masticatory adaptation. Here we report on three newly discovered fossils, aged between 1.78 and 1.95 million years (Myr) old, that clarify the anatomy and taxonomic status of KNM-ER 1470. KNM-ER 62000, a well-preserved face of a late juvenile hominin, closely resembles KNM-ER 1470 but is notably smaller. It preserves previously unknown morphology, including moderately sized, mesiodistally long postcanine teeth. The nearly complete mandible KNM-ER 60000 and mandibular fragment KNM-ER 62003 have a dental arcade that is short anteroposteriorly and flat across the front, with small incisors; these features are consistent with the arcade morphology of KNM-ER 1470 and KNM-ER 62000. The new fossils confirm the presence of two contemporary species of early Homo, in addition to Homo erectus, in the early Pleistocene of eastern Africa.


American Journal of Physical Anthropology | 1997

Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia

Susan C. Antón

An increasing number of claims place hominids outside Africa and deep in Southeast Asia at about the same time that Homo erectus first appears in Africa. The most complete of the early specimens is the partial childs calvaria from Mojokerto (Perning I), Java, Indonesia. Discovered in 1936, the child has been assigned to Australopithecus and multiple species of Homo, including H. modjokertensis, and given developmental ages ranging from 1-8 years. This study systematically assesses Mojokerto relative to modern human and fossil hominid growth series and relative to adult fossil hominids. Cranial base and vault comparisons between Mojokerto and H. sapiens sapiens (Hss) (n = 56), Neandertal (n = 4), and H. erectus (n = 4) juveniles suggest a developmental age range between 4 and 6 years. This range is based in part on new standards for assessing the relative development of the glenoid fossa. Regression analyses of vault arcs and chords indicate that H. erectus juveniles have more rounded frontals and less angulated occipitals than their adult counterparts, whereas Hss juveniles do not show these differences relative to adults. The growth of the cranial superstructures and face appear critical to creating differences in vault contours between H. erectus and Hss. In comparison with adult H. erectus and early Homo (n = 27) and adult Hss (n = 179), the Mojokerto child is best considered a juvenile H. erectus on the basis of synapomorphies of the cranial vault, particularly a metopic eminence and occipital torus, as well as a suite of characters that describe but do not define H. erectus, including obelion depression, supratoral gutter, postorbital constriction, mastoid fissure, lack of sphenoid contribution to glenoid fossa, and length and breadth ratios of the temporomandibular joint. Mojokerto is similar to other juvenile H. erectus in the degree of development of its cranial superstructures and its vault contours relative to adult Indonesian specimens. The synapomorphies which Mojokerto shares with H. erectus are often considered autapomorphies of Asian H. erectus and confirm the early establishment and long-term continuity of the Asian H. erectus bauplan. This continuity does not, however, necessarily reflect on the pattern of origin of modern humans in the region.


International Journal of Primatology | 1999

Macaque Masseter Muscle: Internal Architecture, Fiber Length and Cross-Sectional Area

Susan C. Antón

Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS): a proxy for muscle force. Yet only a small number of macaques of various species, ages, and sexes inform the previous standards for masseter muscle architecture. I dissected 36 masseters from 30 adult females of 3 macaque species—Macaca fascicularis, M. mulatta, M. nemestrina—using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in masseter architecture or fiber length. Intramuscular tendons effectively compartmentalize macaque masseters from medial to lateral. Fiber lengths vary by muscle subsection but are relatively conservative among species. Fiber length does not scale with body size (mass) or masseter muscle mass. However, PCS scales isometrically with body size; larger animals have greater force production capabilities. PCS scales positively allometrically with facial size; animals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masseter muscles in longer-faced animals. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Masseter PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus predictions of muscle force from bone parameters will entail large margins of errors and should be used with caution.


Current Anthropology | 2012

Origins and Evolution of Genus Homo

Susan C. Antón; J. Josh Snodgrass

Recent fossil and archaeological finds have complicated our interpretation of the origin and early evolution of genus Homo. Using an integrated data set from the fossil record and contemporary human and nonhuman primate biology, we provide a fresh perspective on three important shifts in human evolutionary history: (1) the emergence of Homo, (2) the transition between non-erectus early Homo and Homo erectus, and (3) the appearance of regional variation in H. erectus. The shift from Australopithecus to Homo was marked by body and brain size increases, a dietary shift, and an increase in total daily energy expenditure. These shifts became more pronounced in H. erectus, but the transformation was not as radical as previously envisioned. Many aspects of the human life history package, including reduced dimorphism, likely occured later in evolution. The extant data suggest that the origin and evolution of Homo was characterized by a positive feedback loop that drove life history evolution. Critical to this process were probably cooperative breeding and changes in diet, body composition, and extrinsic mortality risk. Multisystem evaluations of the behavior, physiology, and anatomy of extant groups explicitly designed to be closely proxied in the fossil record provide explicit hypotheses to be tested on future fossil finds.


International Journal of Primatology | 1996

Cranial adaptation to a high attrition diet in Japanese macaques

Susan C. Antón

Primates with diets that require greater occlusal forces to process exhibit anteroposteriorly shorter, vertically deeper faces, more anteriorly placed masseter attachment areas, and broader, taller mandibular corpora compared to closely related species/populations. Japanese macaques (Macaca fuscata)eat different, perhaps mechanically tougher to process, foods than other macaques do. Accordingly, they should exhibit structural features of the skull related to dissipating great occlusal loads. To test this hypothesis I compared cranial variables amongst wild-caught, adult female skulls (n = 85) of M. fuscataand three other macaque species (M. mulatta, M. fascicularis,and M. nemestrina)and applied least-squares and reduced-major-axis regression analysis and principal components analysis (PCA) to 17 cranial variables reflecting facial, vault, and mandibular dimensions. When scaled for size, the Japanese macaque has a vertically deeper and anteroposteriorly shorter face,a broader but not taller mandibular corpus, and a more anteriorly placed masseter muscle than the other three macaques do. The first PCA axis isolates variation due to a suite of characters related to mechanical efficiency in dissipating occlusal loads (vertically deep face and broad corpus) and differentiates the Japanese macaques from the other species. This, coupled with reported dietary differences among species, suggests that Japanese macaques are selected for dissipating greater occlusal loads than other macaques are. The presence of a narrow mandible relative to cranial breadth and a hyperrobust mandibular corpus width suggests that axial torsion is a significant influence in the masticatory regime of M. fuscata.The lack of an increase in corpus height indicates that parasagittal bending is not as significant an influence. Geographic and climatic influences cannot account for the patterns of variation between M. fuscataand the other macaques.


Current Anthropology | 2012

Early Homo. Who, when, and where

Susan C. Antón

The origin of Homo is argued to entail niche differentiation resulting from increasing terrestriality and dietary breadth relative to the better known species of Australopithecus (A. afarensis, A. anamensis, A. africanus). I review the fossil evidence from ∼2.5 to 1.5 Ma in light of new finds and analyses that challenge previous inferences. Minimally, three cranial morphs of early Homo (including Homo erectus) exist in eastern Africa (1.9–1.4 Ma), with at least two in southern Africa. Because of taphonomic damage to the type specimen of Homo habilis, in East Africa two species with different masticatory adaptations are better identified by their main specimen (i.e., the 1813 group and the 1470 group) rather than a species name. Until recently, the 1470 group comprised a single specimen. South African early Homo are likely distinct from these groups. Together, contemporary early H. erectus and early Homo are bigger than Australopithecus (∼30%). Early H. erectus (including recently discovered small specimens) is larger than non-erectus Homo (∼15%–25%), but their size ranges overlap. All early Homo are likely to exhibit substantial sexual dimorphism. Early H. erectus is less “modern” and its regional variation in size more substantial than previously allowed. These findings form the baseline for understanding the origin of the genus.


International Journal of Primatology | 2000

Macaque Pterygoid Muscles: Internal Architecture, Fiber length, and Cross-Sectional Area

Susan C. Antón

Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS), a proxy for muscle force. I dissected 36 medial pterygoid and 36 lateral pterygoid muscles from 30 adult females of 3 macaque species (Macaca fascicularis, M. mulatta, M. nemestrina) using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in muscle architecture or fiber length. Fiber length does not scale with body size (mass) for either total pterygoid muscle or for medial pterygoid muscle mass. However, fiber length scales weakly with lateral pterygoid muscle mass. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Medial pterygoid PCS scales isometrically with body size; larger animals have greater force production capabilities. Medial and lateral pterygoid PCS scale positively allometrically with facial size; individuals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masticatory muscles in longer-faced macaques. PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus, predictions of muscle force from bone parameters will entail large margins of error and should be used with caution.

Collaboration


Dive into the Susan C. Antón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig B. Stanford

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge