Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan C. Steele-Dunne is active.

Publication


Featured researches published by Susan C. Steele-Dunne.


Water Resources Research | 2010

Origin and fate of atmospheric moisture over continents

R. J. van der Ent; Hubert H. G. Savenije; Bettina Schaefli; Susan C. Steele-Dunne

There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process of continental moisture feedback. Global maps are presented identifying regions that rely heavily on recycled moisture as well as those that are supplying the moisture. An accounting procedure based on ERA‐Interim reanalysis data is used to calculate moisture recycling ratios. It is computed that, on average, 40% of the terrestrial precipitation originates from land evaporation and that 57% of all terrestrial evaporation returns as precipitation over land. Moisture evaporating from the Eurasian continent is responsible for 80% of China’s water resources. In South America, the Rio de la Plata basin depends on evaporation from the Amazon forest for 70% of its water resources. The main source of rainfall in the Congo basin is moisture evaporated over East Africa, particularly the Great Lakes region. The Congo basin in its turn is a major source of moisture for rainfall in the Sahel. Furthermore, it is demonstrated that due to the local orography, local moisture recycling is a key process near the Andes and the Tibetan Plateau. Overall, this paper demonstrates the important role of global wind patterns, topography and land cover in continental moisture recycling patterns and the distribution of global water resources.


Water Resources Research | 2010

Feasibility of soil moisture estimation using passive distributed temperature sensing

Susan C. Steele-Dunne; Martine Rutten; D. M. Krzeminska; Mark B. Hausner; Scott W. Tyler; John S. Selker; Thom Bogaard; N. C. van de Giesen

Through its role in the energy and water balances at the land surface, soil moisture is a key state variable in surface hydrology and land?atmosphere interactions. Point observations of soil moisture are easy to make using established methods such as time domain reflectometry and gravimetric sampling. However, monitoring large?scale variability with these techniques is logistically and economically infeasible. Here passive soil distributed temperature sensing (DTS) will be introduced as an experimental method of measuring soil moisture on the basis of DTS. Several fiber?optic cables in a vertical profile are used as thermal sensors, measuring propagation of temperature changes due to the diurnal cycle. Current technology allows these cables to be in excess of 10 km in length, and DTS equipment allows measurement of temperatures every 1 m. The passive soil DTS concept is based on the fact that soil moisture influences soil thermal properties. Therefore, observing temperature dynamics can yield information on changes in soil moisture content. Results from this preliminary study demonstrate that passive soil DTS can detect changes in thermal properties. Deriving soil moisture is complicated by the uncertainty and nonuniqueness in the relationship between thermal conductivity and soil moisture. A numerical simulation indicates that the accuracy could be improved if the depth of the cables was known with greater certainty.


Sensors | 2012

Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

Nick van de Giesen; Susan C. Steele-Dunne; Jop Jansen; Olivier Hoes; Mark B. Hausner; Scott W. Tyler; John S. Selker

Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress

Susan C. Steele-Dunne; Jan Friesen; N. C. van de Giesen

A difference has been detected between the C-band wind scatterometer measurements from the morning (descending) and evening (ascending) passes of the European Remote Sensing (ERS) 1/2 satellite. In the West African savanna, for example, these differences correspond to the onset of vegetation water stress. A literature review of the current state of knowledge regarding the diurnal variation in vegetation dielectric properties and its influence on observed backscatter is presented. A numerical sensitivity study using the Michigan microwave canopy scattering model was performed to investigate whether this difference might be explained by diurnal variation in the dielectric properties of the canopy. For vertically copolarized backscatter, as in the case of the ERS wind scatterometer, the greatest sensitivity is to leaf moisture (and, hence, dielectric constant), but the trunk moisture is significant at low values of leaf moisture content. This suggests that the ERS wind scatterometer may well detect changes in vegetation water status. The impact of leaf, branch, trunk, and soil moisture contents on L-band HH, VV, and HV backscatter was also investigated to explore the implications for the National Aeronautics and Space Administrations upcoming Soil Moisture Active Passive (SMAP) mission. Results suggest that combining the morning and evening passes of the SMAP radar observations might yield valuable insight into water stress in areas otherwise considered too densely vegetated for traditional soil moisture retrieval.


Hydrology and Earth System Sciences Discussions | 2014

Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin

Natthachet Tangdamrongsub; Susan C. Steele-Dunne; Brian C. Gunter; Pavel Ditmar; A. H. Weerts

(1) Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands ([email protected]), (2) Water Resources Management, Delft University of Technology, Delft, The Netherlands, (3) School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, The United States, (4) Operational Water Management, Deltares, Delft, The Netherlands, (5) Hydrology and Quantitative Water Management Group, Department of Environmental Sciences, Wageningen University, The Netherlands


IEEE Transactions on Geoscience and Remote Sensing | 2015

Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter From Maize During Water Stress

Tim van Emmerik; Susan C. Steele-Dunne; Jasmeet Judge; Nick van de Giesen

Microwave backscatter from vegetated surfaces is influenced by vegetation structure and vegetation water content (VWC), which varies with meteorological conditions and moisture in the root zone. Radar backscatter observations are used for many vegetation and soil moisture monitoring applications under the assumption that VWC is constant on short timescales. This research aims to understand how backscatter over agricultural canopies changes in response to diurnal differences in VWC due to water stress. A standard water-cloud model and a two-layer water-cloud model for maize were used to simulate the influence of the observed variations in bulk/leaf/stalk VWC and soil moisture on the various contributions to total backscatter at a range of frequencies, polarizations, and incidence angles. The bulk VWC and leaf VWC were found to change up to 30% and 40%, respectively, on a diurnal basis during water stress and may have a significant effect on radar backscatter. Total backscatter time series are presented to illustrate the simulated diurnal difference in backscatter for different radar frequencies, polarizations, and incidence angles. Results show that backscatter is very sensitive to variations in VWC during water stress, particularly at large incidence angles and higher frequencies. The diurnal variation in total backscatter was dominated by variations in leaf water content, with simulated diurnal differences of up to 4 dB in X- through Ku-bands (8.6-35 GHz) . This study highlights a potential source of error in current vegetation and soil monitoring applications and provides insights into the potential use for radar to detect variations in VWC due to water stress.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2017

Radar Remote Sensing of Agricultural Canopies: A Review

Susan C. Steele-Dunne; Heather McNairn; Alejandro Monsivais-Huertero; Jasmeet Judge; Pang-Wei Liu; Kostas Papathanassiou

Observations from spaceborne radar contain considerable information about vegetation dynamics. The ability to extract this information could lead to improved soil moisture retrievals and the increased capacity to monitor vegetation phenology and water stress using radar data. The purpose of this review paper is to provide an overview of the current state of knowledge with respect to backscatter from vegetated (agricultural) landscapes and to identify opportunities and challenges in this domain. Much of our understanding of vegetation backscatter from agricultural canopies stems from SAR studies to perform field-scale classification and monitoring. Hence, SAR applications, theory, and applications are considered here too. An overview will be provided of the knowledge generated from ground-based and airborne experimental campaigns that contributed to the development of crop classification, crop monitoring, and soil moisture monitoring applications. A description of the current vegetation modeling approaches will be given. A review of current applications of spaceborne radar will be used to illustrate the current state of the art in terms of data utilization. Finally, emerging applications, opportunities and challenges will be identified and discussed. Improved representation of vegetation phenology and water dynamics will be identified as essential to improve soil moisture retrievals, crop monitoring, and for the development of emerging drought/water stress applications.


Water Resources Research | 2016

Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

Jianzhi Dong; Susan C. Steele-Dunne; Tyson E. Ochsner; Nick van de Giesen

This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and observation depths at all locations. The proposed method resulted in soil moisture estimates in the top 10 cm with RMSE values typically <0.04 m3/m3. This demonstrates the potential of detecting the spatial variability of soil moisture and properties in vegetated areas from Passive DTS data.


IEEE Geoscience and Remote Sensing Letters | 2017

Dielectric Response of Corn Leaves to Water Stress

Tim van Emmerik; Susan C. Steele-Dunne; Jasmeet Judge; Nick van de Giesen

Radar backscatter from a vegetated surface is sensitive to direct backscatter from the canopy and two-way attenuation of the signal as it travels through the canopy. Both mechanisms are affected by the dielectric properties of the individual elements of the canopy, which are primarily a function of water content. Leaf water content of corn can change considerably during the day and in response to water stress, and model simulations suggested that this significantly affects radar backscatter. Understanding the influence of water stress on leaf dielectric properties will give insight into how the plant water status changes in response to water stress and how radar can be used to detect vegetation water stress. We used a microstrip line resonator to monitor the changes in its resonant frequency at corn leaves, due to variations in dielectric properties. This letter presents the in vivo resonant frequency measurements during field experiments with and without water stress, to understand the dielectric response due to stress. The resonant frequency of the leaf around the main leaf of the stressed plant showed increasing diurnal differences. The dielectric response of the unstressed plant remained stable. This letter shows the clear statistically significant effect of water stress on variations in resonant frequency at individual leaves.


Water Resources Research | 2016

Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother

Jianzhi Dong; Susan C. Steele-Dunne; Tyson E. Ochsner; Christine E. Hatch; Chadi Sayde; John S. Selker; Scott W. Tyler; Michael H. Cosh; Nick van de Giesen

This study demonstrated a new method for mapping high resolution (spatial: 1 m, and temporal: 1 hour) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed an adaptive particle batch smoother algorithm (APBS). In the APBS, a tuning factor, which can avoid severe particle weight degeneration, is automatically determined by maximizing the reliability of the soil temperature estimates of each batch window. A multiple truth synthetic test was used to demonstrate the APBS can robustly estimate soil moisture and properties using observed soil temperatures at two shallow depths. The APBS algorithm was then applied to DTS data along a 71 m transect, yielding an hourly soil moisture map with meter resolution. Results show the APBS can draw the prior guessed soil hydraulic and thermal properties significantly closer to the field measured reference values. The improved soil properties in turn remove the soil moisture biases between the prior guessed and reference soil moisture, which was particularly noticeable at depth above 20 cm. This high resolution soil moisture map demonstrates the potential of characterizing soil moisture temporal and spatial variability and reflects patterns consistent with previous studies conducted using intensive point scale soil moisture samples. The intermediate scale high spatial resolution soil moisture information derived from the DTS may facilitate remote sensing soil moisture product calibration and validation. In addition, the APBS algorithm proposed in this study would also be applicable to general hydrological data assimilation problems for robust model state and parameter estimation. This article is protected by copyright. All rights reserved.

Collaboration


Dive into the Susan C. Steele-Dunne's collaboration.

Top Co-Authors

Avatar

Nick van de Giesen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jianzhi Dong

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thom Bogaard

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim van Emmerik

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Martine Rutten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. M. Krzeminska

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge