Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Cohrs is active.

Publication


Featured researches published by Susan Cohrs.


Circulation | 2012

Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression

Christian Templin; Robert Zweigerdt; Kristin Schwanke; Ruth Olmer; Jelena-Rima Ghadri; Maximilian Y. Emmert; Ennio Müller; Silke M. Küest; Susan Cohrs; Roger Schibli; Peter W. Kronen; Monika Hilbe; Andreas Reinisch; Dirk Strunk; Axel Haverich; Simon P. Hoerstrup; Thomas F. Lüscher; Philipp A. Kaufmann; Ulf Landmesser; Ulrich Martin

Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models. # Clinical Perspective {#article-title-36}


Clinical Cancer Research | 2007

Copper-67 Radioimmunotherapy and Growth Inhibition by Anti–L1-Cell Adhesion Molecule Monoclonal Antibodies in a Therapy Model of Ovarian Cancer Metastasis

Karin Knogler; Jürgen Grünberg; Kurt Zimmermann; Susan Cohrs; Michael Honer; Simon M. Ametamey; Peter Altevogt; Mina Fogel; P. August Schubiger; Ilse Novak-Hofer

Purpose: We examined the tumor-targeting and therapeutic effects of 67Cu-labeled single amino acid mutant forms of anti-L1 monoclonal antibody chCE7 in nude mice with orthotopically implanted SKOV3ip human ovarian carcinoma cells. Experimental Design: For radioimmunotherapy, chCE7 antibodies with a mutation of histidine 310 to alanine (chCE7H310A) and a mutation of asparagine 297 to glutamine (chCE7agl) were generated to achieve more rapid blood clearance. Biodistributions of 67Cu-4-(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl benzoic acid tetrachloride (CPTA)–labeled mutant antibodies were measured in nude mice bearing SKOV3ip human ovarian cancer metastases. The effects of single i.v. injections of 67Cu-chCE7agl alone on tumor reduction and survival were investigated. In addition, a combination of low-dose 67Cu-radioimmunotherapy with unlabeled anti-L1 antibody L1-11A on survival was investigated. Results:67Cu-CPTA-chCE7agl showed high (up to 49% ID/g) and persistent (up to 168 h) uptake in SKOV3ip metastases, with low levels in normal tissues. 67Cu-CPTA-chCE7H310A revealed a shorter half-life in the blood and a lower tumor uptake and retention. A single low dose of 4 MBq of 67Cu-chCE7agl reduced tumor growth but did not prolong survival significantly, whereas a single 10.5 MBq dose of 67Cu-chCE7agl reduced tumor growth and prolonged survival significantly. The combination of unlabeled monoclonal antibody L1-11A with a subtherapeutic dose of 67Cu-radioimmunotherapy also prolonged survival significantly. Conclusion: The results show improved pharmacokinetics and biodistributions as well as the therapeutic effect of the 67Cu-labeled single amino acid mutant chCE7agl. Therapeutic data indicate, for the first time, the feasibility of combining anti–L1-directed growth inhibition and 67Cu-radioimmunotherapy, thereby increasing the efficiency of antibody treatment of metastatic ovarian carcinoma.


Nuclear Medicine and Biology | 2010

The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy

Silvia Lehenberger; Christoph Barkhausen; Susan Cohrs; Eliane Fischer; Jürgen Grünberg; Alexander Hohn; Ulli Koster; Roger Schibli; A. Türler; Konstantin Zhernosekov

INTRODUCTION The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging. METHODS The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. RESULTS Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate. CONCLUSIONS We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents.


The International Journal of Biochemistry & Cell Biology | 2009

The soluble form of the cancer-associated L1 cell adhesion molecule is a pro-angiogenic factor.

Alexandra Friedli; Eliane Fischer; Ilse Novak-Hofer; Susan Cohrs; Kurt Ballmer-Hofer; P. August Schubiger; Roger Schibli; Jürgen Grünberg

A soluble form of the L1 cell adhesion molecule (sL1) is released from various tumor cells and can be found in serum and ascites fluid of uterine and ovarian carcinoma patients. sL1 is a ligand for several Arg-Gly-Asp (RGD)-binding integrins and can be deposited in the extracellular matrix. In this study we describe a novel function of this physiologically relevant form of L1 as a pro-angiogenic factor. We demonstrated that the anti-L1 monoclonal antibody (mAb) chCE7 binds near or to the sixth Ig-like domain of human L1 which contains a single RGD sequence. mAb chCE7 inhibited the RGD-dependent adhesion of ovarian carcinoma cells to sL1 and reversed the sL1-induced proliferation, matrigel invasion and tube formation of bovine aortic endothelial (BAE) cells. A combination of sL1 with vascular endothelial growth factor-A (VEGF-A(165)), which is an important angiogenic inducer in tumors, strongly potentiated VEGF receptor-2 tyrosine phosphorylation in BAE cells. Chick chorioallantoic membrane (CAM) assays revealed the pro-angiogenic potency of sL1 in vivo which could be abolished by chCE7. These results indicate an important role of released L1 in tumor angiogenesis and represent a novel function of antibody chCE7 in tumor therapy.


International Journal of Cancer | 2012

L1-CAM-targeted antibody therapy and 177Lu-radioimmunotherapy of disseminated ovarian cancer

Eliane Fischer; Jürgen Grünberg; Susan Cohrs; Alexander Hohn; Karin Waldner-Knogler; Simone Jeger; Kurt Zimmermann; Ilse Novak-Hofer; Roger Schibli

The L1‐cell adhesion molecule (L1‐CAM) is highly expressed in various cancer types including ovarian carcinoma but is absent from most normal tissue. A chimeric monoclonal antibody, chCE7, specifically binds to human L1‐CAM and exhibits anti‐proliferative effects on L1‐CAM‐expressing tumor cells. The goal of this study was to evaluate the efficacy of a novel 177Lu‐chCE7 radioimmunotherapeutic agent and to compare it to a treatment protocol with unlabeled, growth‐inhibiting chCE7 in a mouse xenograft model of disseminated ovarian cancer. chCE7agl, an aglycosylated IgG1 variant with improved pharmacokinetics, was conjugated with 1,4,7,10‐tetraazacyclododecane‐N‐N′‐N′‐N‴‐tetraacetic acid (DOTA) and labeled with the low‐energy β‐emitter 177Lu. Tumor growth and survival were assessed after a single i.v. dose of 8 MBq (60 μg) radioimmunoconjugate in nude mice bearing either subcutaneous or intraperitoneal SKOV3.ip1 human ovarian cancer tumors. Therapeutic efficacy was compared with three times weekly i.p. administration of 10 mg/kg unconjugated chCE7. In vivo analysis of 177Lu‐chCE7agl biodistribution demonstrated high and specific accumulation of radioactivity at the tumor site with maximal tumor uptake of up to 48.0 ± 8.1% ID/g at 168 h postinjection. A single treatment with 177Lu‐DOTA‐chCE7agl caused significant retardation of tumor growth and prolonged median survival from 33 to 71 days, while administration of a nontargeted 177Lu‐immunoconjugate had no beneficial effect. Three times weekly i.p. application of unlabeled chCE7 10 mg/kg similarly increased survival from 44 to 72 days. We conclude that a single dose of 177Lu‐DOTA‐chCE7agl is as effective as repeated administration of nonradioactive chCE7 for treatment of small intraperitoneal tumors expressing L1‐CAM.


Bioorganic & Medicinal Chemistry | 2013

Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression

Jason P. Holland; Michael W. Jones; Susan Cohrs; Roger Schibli; Eliane Fischer

Anti-mitotic anti-cancer drugs offer a potential platform for developing new radiotracers for imaging proliferation markers associated with the mitosis-phase of the cell-cycle. One interesting target is kinesin spindle protein (KSP)-an ATP-dependent motor protein that plays a vital role in bipolar spindle formation. In this work we synthesised a range of new fluorinated-quinazolinone compounds based on the structure of the clinical candidate KSP inhibitor, ispinesib, and investigated their properties in vitro as potential anti-mitotic agents targeting KSP expression. Anti-proliferation (MTT and BrdU) assays combined with additional studies including fluorescence-assisted cell sorting (FACS) analysis of cell-cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Additional studies using confocal fluorescence microscopy showed that these compounds induce M-phase arrest via monoaster spindle formation. Structural studies revealed that compound 20-(R) is the most potent fluorinated-quinazolinone inhibitor of KSP and represents a suitable lead candidate for further studies on designing (18)F-radiolabelled agents for positron-emission tomography (PET).


Circulation | 2012

Transplantation and Tracking of Human Induced Pluripotent Stem Cells in a Pig Model of Myocardial Infarction: Assessment of Cell Survival, Engraftment and Distribution by Hybrid SPECT-CT Imaging of Sodium Iodide Symporter Trangene Expression

Christian Templin; Robert Zweigerdt; Kristin Schwanke; Ruth Olmer; Jelena-Rima Ghadri; Maximilian Y. Emmert; Ennio Müller; Silke M. Küest; Susan Cohrs; Roger Schibli; Peter W. Kronen; Monika Hilbe; Andreas Reinisch; Dirk Strunk; Axel Haverich; Simon P. Hoerstrup; Thomas F. Lüscher; Philipp A. Kaufmann; Ulf Landmesser; Ulrich Martin

Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models. # Clinical Perspective {#article-title-36}


Nuclear Medicine and Biology | 2017

Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors

Hadis Honarvar; Cristina Müller; Susan Cohrs; Stephanie Haller; Kristina Westerlund; Amelie Eriksson Karlström; Nicholas P. van der Meulen; Roger Schibli; Vladimir Tolmachev

INTRODUCTION Affibody molecules are small (58 amino acids) high-affinity proteins based on a tri-helix non-immunoglobulin scaffold. A clinical study has demonstrated that PET imaging using Affibody molecules labeled with 68Ga (T½=68min) can visualize metastases of breast cancer expressing human epidermal growth factor receptor type 2 (HER2) and provide discrimination between tumors with high and low expression level. This may help to identify breast cancer patients benefiting from HER2-targeting therapies. The best discrimination was at 4h post injection. Due to longer half-life, a positron-emitting radionuclide 44Sc (T½=4.04h) might be a preferable label for Affibody molecules for imaging at several hours after injection. METHODS A synthetic second-generation anti-HER2 Affibody molecule ZHER2:2891 was labeled with 44Sc via a DOTA-chelator conjugated to the N-terminal amino group. Binding specificity, affinity and cellular processing 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891 were compared in vitro using HER2-expressing cells. Biodistribution and imaging properties of 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891 were evaluated in Balb/c nude mice bearing HER2-expression xenografts. RESULTS The labeling yield of 98±2% and specific activity of 7.8GBq/μmol were obtained. The conjugate demonstrated specific binding to HER2-expressing SKOV3.ip cells in vitro and to SKOV3.ip xenografts in nude mice. The distribution of radioactivity at 3h post injection was similar for 44Sc-DOTA-ZHER2:2891 and 68Ga-DOTA-ZHER2:2891, but the blood clearance of the 44Sc-labeled variant was slower and the tumor-to-blood ratio was reduced (15±2 for 44Sc-DOTA-ZHER2:2891 vs 46±9 for 68Ga-DOTA-ZHER2:2891). At 6h after injection of 44Sc-DOTA-ZHER2:2891 the tumor uptake was 8±2% IA/g and the tumor-to-blood ratio was 51±8. Imaging using small-animal PET/CT demonstrated that 44Sc-DOTA-ZHER2:2891 provides specific and high-contrast imaging of HER2-expressing xenografts. CONCLUSION The 44Sc- DOTA-ZHER2:2891 Affibody molecule is a promising probe for imaging of HER2-expression in malignant tumors.


Nuclear Medicine and Biology | 2014

Future prospects for SPECT imaging using the radiolanthanide terbium-155 — production and preclinical evaluation in tumor-bearing mice

Cristina Müller; Eliane Fischer; Martin Béhé; Ulli Koster; Holger Dorrer; Josefine Reber; Stephanie Haller; Susan Cohrs; Alain Blanc; Jürgen Grünberg; Maruta Bunka; Konstantin Zhernosekov; Nicholas P. van der Meulen; K. Johnston; A. Türler; Roger Schibli

INTRODUCTION We assessed the suitability of the radiolanthanide (155)Tb (t1/2=5.32 days, Eγ=87 keV (32%), 105keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. METHODS (155)Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. (155)Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules - a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) - were radiolabeled with (155)Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. RESULTS The total yield of the two-step separation process of (155)Tb was 86%. (155)Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The (155)Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (>95%). (155)Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of (155)Tb-DOTATATE and (155)Tb-MD, respectively. The relatively long physical half-life of (155)Tb matched in particular the biological half-lives of (155)Tb-cm09 and (155)Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. CONCLUSIONS The radiolanthanide (155)Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β(-)-emitting radiolanthanides (177)Lu, (161)Tb, (166)Ho, and the pseudo-radiolanthanide (90)Y.


EJNMMI research | 2014

Paclitaxel improved anti-L1CAM lutetium-177 radioimmunotherapy in an ovarian cancer xenograft model

Dennis Lindenblatt; Eliane Fischer; Susan Cohrs; Roger Schibli; Jürgen Grünberg

BackgroundTodays standard treatment of advanced-stage ovarian cancer, including surgery followed by a paclitaxel-platinum-based chemotherapy, is limited in efficacy. Recently, we could show that radioimmunotherapy (RIT) with 177Lu-labelled anti-L1 cell adhesion molecule (L1CAM) monoclonal antibody chCE7 is effective in ovarian cancer therapy. We investigated if the efficacy of anti-L1CAM RIT can be further improved by its combination with paclitaxel (PTX).MethodsIn vitro cell viability and cell cycle arrest of human ovarian cancer cells were assessed upon different treatment conditions. For therapy studies, nude mice (n = 8) were injected subcutaneously with IGROV1 human ovarian carcinoma cells and received a single dose of 6 MBq 177Lu-DOTA-chCE7 alone or in combination with 600 μg PTX (31.6 mg/kg). Tumour growth delay and survival were determined. To investigate whether PTX can influence the tumour uptake of the radioimmunoconjugates (RICs), a biodistribution study (n = 4) and SPECT/CT images were acquired 120 h post injections of 2 MBq 177Lu-DOTA-chCE7 alone or in combination with 600 μg PTX.ResultsLu-DOTA-chCE7 in combination with PTX revealed a significantly decreased cell viability of ovarian carcinoma cells in vitro and was effective in a synergistic manner (combination index < 1). PTX increased the RIT efficacy by arresting cells in the radiosensitive G2/M phase of the cell cycle 24 h post treatment start. In vivo combination therapy including 177Lu-DOTA-chCE7 and PTX resulted in a significantly prolonged overall survival (55 days vs. 18 days/PTX and 29 days/RIT), without weight loss and/or signs of toxicity. Biodistribution studies revealed no significant difference in tumour uptakes of 177Lu-DOTA-chCE7 72 h post injection regardless of an additional PTX administration.ConclusionsCombination of anti-L1CAM 177Lu-RIT with PTX is a more effective therapy resulting in a prolonged overall survival of human ovarian carcinoma-bearing nude mice compared with either monotherapy. The combination is promising for future clinical applications.

Collaboration


Dive into the Susan Cohrs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge