Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan D. Craddock is active.

Publication


Featured researches published by Susan D. Craddock.


Journal of Neurochemistry | 2002

Secreted Forms of β-Amyloid Precursor Protein Protect Against Ischemic Brain Injury

Virginia L. Smith-Swintosky; L. Creed Pettigrew; Susan D. Craddock; Alan R. Culwell; Russell E. Rydel; Mark P. Mattson

Abstract: The β‐amyloid precursor protein (βAPP) is the source of the amyloid β‐peptide that accumulates in the brain in Alzheimers disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β‐peptide sequence that liberates secreted forms of βAPP (APPSs) into the extracellular milieu. We now report that postischemic administration of these APPSs intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS695 or APPS751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPSs in vivo.


Journal of Cerebral Blood Flow and Metabolism | 1996

Metyrapone, an Inhibitor of Glucocorticoid Production, Reduces Brain Injury Induced by Focal and Global Ischemia and Seizures

Virginia L. Smith-Swintosky; L. Creed Pettigrew; Robert M. Sapolsky; Chris Phares; Susan D. Craddock; Sheila M. Brooke; Mark P. Mattson

Increasing evidence indicates that glucocorticoids (GCs), produced in response to physical/emotional stressors, can exacerbate brain damage resulting from cerebral ischemia and severe seizure activity. However, much of the supporting evidence has come from studies employing nonphysiological paradigms in which adrenalectomized rats were compared with those exposed to constant GC concentrations in the upper physiological range. Cerebral ischemia and seizures can induce considerable GC secretion. We now present data from experiments using metyrapone (an 11-β-hydroxylase inhibitor of GC production), which demonstrate that the GC stress-response worsens subsequent brain damage induced by ischemia and seizures in rats. Three different paradigms of brain injury were employed: middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia; four-vessel occlusion (4VO) model of transient global forebrain ischemia; and kainic acid (KA)-induced (seizure-mediated) excitotoxic damage to hippocampal CA3 and CA1 neurons. Metyrapone (200 mg/kg body wt) was administered systemically in a single i.p. bolus 30 min prior to each insult. In the MCAO model, metyrapone treatment significantly reduced infarct volume and also preserved cells within the infarct. In the 4VO model, neuronal loss in region CA1 of the hippocampus was significantly reduced in rats administered metyrapone. Seizure-induced damage to hippocampal pyramidal neurons (assessed by cell counts and immunochemical analyses of cytoskeletal alterations) was significantly reduced in rats administered metyrapone. Measurement of plasma levels of corticosterone (the species-typical GC of rats) after each insult showed that metyrapone significantly suppressed the injury-induced rise in levels of circulating corticosterone. These findings indicate that endogenous corticosterone contributes to the basal level of brain injury resulting from cerebral ischemia and excitotoxic seizure activity and suggest that drugs that suppress glucocorticoid production may be effective in reducing brain damage in stroke and epilepsy patients.


Journal of Cerebral Blood Flow and Metabolism | 1996

Microtubular proteolysis in focal cerebral ischemia

L. Creed Pettigrew; Mary L. Holtz; Susan D. Craddock; Stephen L. Minger; Nathan Hall; James W. Geddes

Calpain, a neutral protease activated by calcium, may promote microtubular proteolysis in ischemic brain. We tested this hypothesis in an animal model of focal cerebral ischemia without reperfusion. The earliest sign of tissue injury was observed after no more than 15 min of ischemia, with coiling of apical dendrites immunolabeled to show microtubule-associated protein 2 (MAP2). After 6 h of ischemia, MAP2 immunoreactivity was markedly diminished in the infarct zone. Quantitative Western analysis demonstrated that MAP2 was almost unmeasurable after 24 h of ischemia. An increase in calpain activity, shown by an antibody recognizing calpain-cleaved spectrin fragments, paralleled the loss of MAP2 immunostaining. Double-labeled immunofluorescent studies showed that intraneuronal calpain activity preceded evidence of MAP2 proteolysis. Perikaryal immunolabeling of τ protein became increasingly prominent between 1 and 6 h in neurons located within the transition zone between ischemic and unaffected tissue. Western blot experiments confirmed that dephosphorylation of τ protein occurred during 24 h of ischemia, but was not associated with significant loss of τ antigen. We conclude that focal cerebral ischemia is associated with early microtubular proteolysis caused by calpain.


Neuroscience Letters | 1996

Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain.

James W. Geddes; L. Creed Pettigrew; Mary L. Holtz; Susan D. Craddock; Mahin D. Maines

Two heme oxygenase (HO) proteins have been identified to date; HO-1, a stress-induced protein, and HO-2, a constitutively expressed isoform. Recently, it was demonstrated that HO-1 mRNA expression is increased following transient global ischemia. The present study examined the effects of global and focal ischemia on HO-1 and HO-2 protein, using immunocytochemistry. Following 20 min of ischemia (rat 4 vessel occlusion model with hypotension) and 6 h of recirculation, increased HO-1 immunoreactivity was evident in hippocampal neurons. After 24 h of recirculation, HO-1 was observed in both hippocampal neurons and astroglial cells. By 72 h, expression was primarily glial and restricted to CA1 and CA3c. In addition to hippocampus, HO-1 was also evident in both neurons and glia in cerebral cortex and thalamus, and in striatal glial cells. Twenty-four hours following permanent focal ischemia, HO-1 immunoreactivity was observed in astroglial cells in the penumbra region surrounding the infarct. In contrast to HO-1, the pattern of HO-2 immunoreactivity was not altered following transient global or permanent focal ischemia. The increased expression of HO-1 following ischemia may confer protection against oxidative stress, but might also contribute to the subsequent neuronal degeneration.


Journal of Neurochemistry | 2005

The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia.

Amit S. Korde; L. Creed Pettigrew; Susan D. Craddock; William F. Maragos

Ischemic stroke is caused by acute neuronal degeneration provoked by interruption of cerebral blood flow. Although the mechanisms contributing to ischemic neuronal degeneration are myriad, mitochondrial dysfunction is now recognized as a pivotal event that can lead to either necrotic or apoptotic neuronal death. Lack of suitable ‘upstream’ targets to prevent loss of mitochondrial homeostasis has, so far, restricted the development of mechanistically based interventions to promote neuronal survival. Here, we show that the uncoupling agent 2,4 dinitrophenol (DNP) reduces infarct volume approximately 40% in a model of focal ischemia–reperfusion injury in the rat brain. The mechanism of protection involves an early decrease in mitochondrial reactive oxygen species formation and calcium uptake leading to improved mitochondrial function and a reduction in the release of cytochrome c into the cytoplasm. The observed effects of DNP were not associated with enhanced cerebral perfusion. These findings indicate that compounds with uncoupling properties may confer neuroprotection through a mechanism involving stabilization of mitochondrial function.


Journal of Cerebral Blood Flow and Metabolism | 1994

Alterations in τ Immunostaining in the Rat Hippocampus following Transient Cerebral Ischemia

James W. Geddes; Claudia Schwab; Susan D. Craddock; Janice L. Wilson; L. Creed Pettigrew

Previous studies in gerbils have shown that cytoskeletal disruption and a loss of the dendritic microtubule-associated protein, MAP2, may occur after short periods of transient global ischemia. τ, a predominantly axonal microtubule-associated protein, has not been examined following ischemia. We compared neuronal damage with alterations in MAP2, τ, and 72-kD heat shock protein (HSP72) immunostaining at various reperfusion times following 20 min of ischemia in the rat four-vessel occlusion model. τ accumulated in neuronal cell bodies throughout the hippocampal formation 30 min to 2 h after the ischemic insult. Perikaryal τ immunostaining was transient in most regions, but persisted in polymorphic hilar neurons. This was accompanied by a loss of immunostaining in the target of many hilar neurons, the inner molecular layer of the dentate gyrus. The same neuronal populations that exhibited increased τ immunostaining of perikarya later displayed an induction of HSP72 immunoreactivity. In contrast, loss of MAP2 immunostaining was not consistently observed before neuronal death and did not correspond to HSP72 induction. The altered τ immunostaining is not the direct result of excitotoxic insult, as intrahippocampal injection of kainic acid did not cause the somal accumulation of τ, but did cause disruption of MAP2 immunostaining. Taken together, the results suggest that the somal accumulation of τ is an early, sensitive, and selective marker of ischemic insult.


Brain Research | 1998

Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia.

Stephen L. Minger; James W. Geddes; Mary L. Holtz; Susan D. Craddock; Sidney W. Whiteheart; Robert Siman; L. Creed Pettigrew

Excitatory amino acids may promote microtubular proteolysis observed in ischemic neuronal degeneration by calcium-mediated activation of calpain, a neutral protease. We tested this hypothesis in an animal model of focal cerebral ischemia without reperfusion. Spontaneously hypertensive rats were treated with 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)quinoxaline (NBQX), a competitive antagonist of the neuronal receptor for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or cis-4-[phosphono-methyl]-2-piperidine carboxylic acid (CGS 19755), a competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor. After treatment, all animals were subjected to permanent occlusion of the middle cerebral artery for 6 or 24 h. Infarct volumes measured in animals pretreated with CGS 19755 after 24 h of ischemia were significantly smaller than those quantified in ischemic controls. Rats pretreated with NBQX showed partial amelioration of cytoskeletal injury with preserved immunolabeling of microtubule-associated protein 2 (MAP 2) at 6 and 24 h and reduced accumulation of calpain-cleaved spectrin byproducts only at 6 h. Prevention of cytoskeletal damage was more effective after pretreatment with CGS 19755, as shown by retention of MAP 2 immunolabeling and significant restriction of calpain activity at both 6 and 24 h. Preserved immunolabeling of tau protein was observed at 6 and 24 h only in animals pretreated with CGS 19755. Western analysis performed on ischemic cortex taken from controls or rats pretreated with either NBQX or CGS 19755 suggested that loss of tau protein immunoreactivity was caused by dephosphorylation, rather than proteolysis. These results demonstrate a crucial link between excitotoxic neurotransmission, microtubular proteolysis, and neuronal degeneration in focal cerebral ischemia.


Brain Research | 2001

Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain

Mary L. Holtz; Susan D. Craddock; L. Creed Pettigrew

OBJECTIVE To determine whether neuronal and inducible nitric oxide synthase (nNOS and iNOS) isoforms are expressed within cortical neurons during early reperfusion after focal cerebral ischemia. METHODS Male spontaneously hypertensive rats underwent occlusion of the left middle cerebral artery for 2 h. Coronal brain sections with normal and ischemic cortex were obtained after 15 min or 1, 6 or 24 h of reperfusion. Immunohistochemical and double-label immunofluorescent techniques were used to confirm cellular identity and localize nNOS and iNOS. RESULTS Immunoreactive nNOS was identified within isolated neurons in layer V of normal cortex. However, the number of nNOS-immunoreactive neurons in ischemic cortex rose markedly at 15 min and persisted for 24 h (P< or =0.001 at each time point when compared to normal cortex). Cells that were immunoreactive for nNOS appeared in perivascular clusters within ischemic brain at all sampling times. Immunoreactive iNOS was also expressed within neurons in ischemic cortex, peaking after 15 min of reperfusion (P< or =0.01). Although nNOS-immunoreactive neurons were observed in random numbers within normal tissue throughout reperfusion, iNOS-immunoreactive neurons increased steadily in the same region (P< or =0.05). CONCLUSIONS Ischemic neurons become immunoreactive for both nNOS and iNOS during early reperfusion. Expression of iNOS immunoreactivity in unaffected neurons may reflect transcription of immediate early genes in response to stimulatory neurotransmission from ischemic cortex.


Brain Research | 1995

Delayed elevation of platelet activating factor in ischemic hippocampus

L. Creed Pettigrew; Jerome J. Meyer; Susan D. Craddock; Steven M. Butler; Hsin-Hsiung Tai; Robert A. Yokel

We used in vivo microdialysis to define the chronological relationship between release of thromboxane and platelet activating factor (PAF) into the extracellular space of ischemic hippocampus. The thromboxane level peaked after 20 min of postischemic reperfusion, followed by a delayed PAF response 120 min later. We conclude that cerebral ischemia causes delayed elevation of PAF in the extracellular space, long after the immediate synthesis and release of thromboxane metabolites.


Molecular Brain Research | 1996

Induction of PGH synthase and c-fos mRNA during early reperfusion of ischemic rat brain

Mary L. Holtz; Mark S. Kindy; Susan D. Craddock; Robert W. Moore; L. Creed Pettigrew

We examined the effect of reversible ischemia on the transcription of prostaglandin endoperoxide synthase (PGHS-1) and c-fos mRNA in rat cerebral cortex. The level of PGHS-1 mRNA climaxed after 30 min of ischemia whereas transcription of c-fos mRNA peaked after 60 min of postischemic reperfusion. We conclude that cerebral ischemia causes early transcription of PGHS-1, without modulation by the c-fos gene or its translated product.

Collaboration


Dive into the Susan D. Craddock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit S. Korde

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Mattson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark S. Kindy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge