Susan De La Cruz
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan De La Cruz.
Environmental Pollution | 2009
Collin A. Eagles-Smith; Joshua T. Ackerman; Susan De La Cruz
We evaluated mercury (Hg) in five waterbird species representing three foraging guilds in San Francisco Bay, CA. Fish-eating birds (Forsters and Caspian terns) had the highest Hg concentrations in their tissues, but concentrations in an invertebrate-foraging shorebird (black-necked stilt) were also elevated. Foraging habitat was important for Hg exposure as illustrated by within-guild differences, where species more associated with marshes and salt ponds had higher concentrations than those more associated with open-bay and tidal mudflats. Importantly, Hg concentrations increased with time spent in the estuary. Surf scoter concentrations tripled over six months, whereas Forsters terns showed an up to 5-fold increase between estuary arrival and breeding. Breeding waterbirds were at elevated risk of Hg-induced reproductive impairment, particularly Forsters terns, in which 48% of breeding birds were at high risk due to their Hg levels. Our results highlight the importance of habitat and exposure timing, in addition to trophic position, on waterbird Hg bioaccumulation and risk.
The Auk | 2014
Jeffrey M. Warren; Kyle A. Cutting; Susan De La Cruz; Tony D. Williams; David N. Koons
ABSTRACT The decision to breed influences an individuals current and future reproduction, and the proportion of individuals that breed is an important determinant of population dynamics. Age, experience, individual quality, and environmental conditions have all been demonstrated to influence breeding propensity. To elucidate which of these factors exerts the greatest influence on breeding propensity in a temperate waterfowl, we studied female Lesser Scaup (Aythya affinis) breeding in southwestern Montana. Females were captured during the breeding seasons of 2007–2009, and breeding status was determined on the basis of (1) presence of an egg in the oviduct or (2) blood plasma vitellogenin (VTG) levels. Presence on the study site in the previous year, a proxy for adult female success, was determined with stable isotope signatures of a primary feather collected at capture. Overall, 57% of females had evidence of breeding at the time of capture; this increased to 86% for females captured on or after peak nest initiation. Capture date and size-adjusted body condition positively influenced breeding propensity, with a declining body-condition threshold through the breeding season. We did not detect an influence of age on breeding propensity. Drought conditions negatively affected breeding propensity, reducing the proportion of breeding females to 0.85 (SE = 0.05) from 0.94 (SE = 0.03) during normal-water years. A female that was present in the previous breeding season was 5% more likely to breed than a female that was not present then. The positive correlation between age and experience makes it difficult to differentiate the roles of age, experience, and individual quality in reproductive success in vertebrates. Our results indicate that individual quality, as expressed by previous success and current body condition, may be among the most important determinants of breeding propensity in female Lesser Scaup, providing further support for the individual heterogeneity hypothesis.
Marine Pollution Bulletin | 2013
Susan De La Cruz; Kyle A. Spragens; Julie Yee; Richard T. Golightly; Greg Massey; Laird A. Henkel; R. Scott Larsen; Michael H. Ziccardi
Birds are often the most numerous vertebrates damaged and rehabilitated in marine oil spills; however, the efficacy of avian rehabilitation is frequently debated and rarely examined experimentally. We compared survival of three radio-marked treatment groups, oiled, rehabilitated (ORHB), un-oiled, rehabilitated (RHB), and un-oiled, non-rehabilitated (CON), in an experimental approach to examine post-release survival of surf scoters (Melanitta perspicillata) following the 2007 M/V Cosco Busan spill in San Francisco Bay. Live encounter-dead recovery modeling indicated that survival differed among treatment groups and over time since release. The survival estimate (±SE) for ORHB was 0.143±0.107 compared to CON (0.498±0.168) and RHB groups (0.772±0.229), suggesting scoters tolerated the rehabilitation process itself well, but oiling resulted in markedly lower survival. Future efforts to understand the physiological effects of oil type and severity on scoters are needed to improve post-release survival of this species.
Journal of Wildlife Management | 2011
Erika K. Lok; Daniel Esler; Susan De La Cruz; W. Sean Boyd; David R. Nysewander; Joseph R. Evenson; David H. Ward
ABSTRACT Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation.
American Journal of Botany | 2016
Mihai Costea; Saša Stefanović; Miguel Angel Garcia; Susan De La Cruz; Michael L. Casazza; Andy J. Green
PREMISE OF THE STUDY Dispersal of parasitic Cuscuta species (dodders) worldwide has been assumed to be largely anthropomorphic because their seeds do not match any previously known dispersal syndrome and no natural dispersal vectors have been reliably documented. However, the genus has a subcosmopolitan distribution and recent phylogeographic results have indicated that at least18 historical cases of long-distance dispersal (LDD) have occurred during its evolution. The objective of this study is to report the first LDD biological vector for Cuscuta seeds. METHODS Twelve northern pintails (Anas acuta) were collected from Suisun Marsh, California and the contents of their lowest part of the large intestine (rectum) were extracted and analyzed. Seed identification was done both morphologically and using a molecular approach. Extracted seeds were tested for germination and compared to seeds not subjected to gut passage to determine the extent of structural changes caused to the seed coat by passing through the digestive tract. KEY RESULTS Four hundred and twenty dodder seeds were found in the rectum of four northern pintails. From these, 411 seeds were identified as Cuscuta campestris and nine as most likely C. pacifica. The germination rate of C. campestris seeds after gut passage was 55%. Structural changes caused by the gut passage in both species were similar to those caused by an acid scarification. CONCLUSIONS Endozoochory by waterbirds may explain the historical LDD cases in the evolution of Cuscuta. This also suggests that current border quarantine measures may be insufficient to stopping spreading of dodder pests along migratory flyways.
Emerging microbes & infections | 2017
Andrew M. Ramey; Nichola J. Hill; Troy Cline; Magdalena Plancarte; Susan De La Cruz; Michael L. Casazza; Joshua T Ackerman; Joseph P. Fleskes; T. Winston Vickers; Andrew B. Reeves; Frances M. D. Gulland; Christine Fontaine; Diann J. Prosser; Jonathan A. Runstadler; Walter M. Boyce
We used surveillance data collected in California before, concurrent with, and subsequent to an outbreak of highly pathogenic (HP) clade 2.3.4.4 influenza A viruses (IAVs) in 2014–2015 to (i) evaluate IAV prevalence in waterfowl, (ii) assess the evidence for spill-over infections in marine mammals and (iii) genetically characterize low-pathogenic (LP) and HP IAVs to refine inference on the spatiotemporal extent of HP genome constellations and to evaluate possible evolutionary pathways. We screened samples from 1496 waterfowl and 1142 marine mammals collected from April 2014 to August 2015 and detected IAV RNA in 159 samples collected from birds (n=157) and pinnipeds (n=2). HP IAV RNA was identified in three samples originating from American wigeon (Anas americana). Genetic sequence data were generated for a clade 2.3.4.4 HP IAV-positive diagnostic sample and 57 LP IAV isolates. Phylogenetic analyses revealed that the HP IAV was a reassortant H5N8 virus with gene segments closely related to LP IAVs detected in mallards (Anas platyrhynchos) sampled in California and other IAVs detected in wild birds sampled within the Pacific Americas Flyway. In addition, our analysis provided support for common ancestry between LP IAVs recovered from waterfowl sampled in California and gene segments of reassortant HP H5N1 IAVs detected in British Columbia, Canada and Washington, USA. Our investigation provides evidence that waterfowl are likely to have played a role in the evolution of reassortant HP IAVs in the Pacific Americas Flyway during 2014–2015, whereas we did not find support for spill-over infections in potential pinniped hosts.
Journal of Wildlife Diseases | 2017
Robert T. Patton; Katharine S. Goodenough; Susan De La Cruz; HannahRose M. Nevins; Rebecca A. Cole; Barbara Bodenstein; Valerie I. Shearn-Bochsler; Brian Collins; Jessie Beck; Matthew Sadowski
Abstract From 12 May 2013 to 29 May 2013, the Gull-billed Tern (Gelochelidon nilotica) colony at the San Diego Bay National Wildlife Refuge, California, US, experienced a mass die-off of at least 92 adults, representing 71–92% of the breeding population on the US west coast. Cause of death was determined to be peritonitis due to perforations of the intestine by a large quantity of acanthocephala (Profilicollis [=Polymorphus] altmani). This is a unique report of P. altmani infecting G. nilotica, and a report of a great impact to a tern population in southern California. Mole crabs (Emerita analoga), the intermediate host for P. altmani and a major component of the Gull-billed Tern diet in San Diego, were found in the stomachs of necropsied terns along with cystacanths, and are the presumed source of the parasite infection. The terns dietary reliance upon mole crabs likely amplified parasite transmission and infection. We suggest additional research to determine factors that influence parasite infection of intermediate and definitive hosts, particularly mole crabs, given that they are a vital resource for migrating birds within the coastal zone.
Waterbirds | 2016
Kyra L. Mills; Joseph K. Gaydos; Christine V. Fiorello; Emily R. Whitmer; Susan De La Cruz; Daniel M. Mulcahy; L. Ignacio Vilchis; Michael H. Ziccardi
Abstract. The main goal of this study was to gain knowledge on post-release survival and movement of Western Grebes (Aechmophorus occidentalis) using a modified technique for implanting satellite transmitters. This technique had improved post-surgical survival in an earlier study. Nine Western Grebes, implanted with intracoelomic (within the body cavity) satellite transmitters with percutaneous antennae, were released close to their capture site in San Francisco Bay, California, USA. Eight survived at least 25 days (average number of transmittal days was 140.8), while two had transmitters that provided data for greater than 1 year (436 and 454 days). The average cumulative distance recorded for all Western Grebes (n = 9) was 829 km with two round-trip movements documented. One individual Western Grebe traveled a cumulative round-trip distance of 2,144 km in July and November 2011, while another individual traveled a round-trip distance of 1,514 km between 8 and 14 December 2011. This study provides a step forward in testing implantable satellite transmitters in Western Grebes and highlights the need to further improve tracking methods, potentially improving our understanding of their population threats.
Marine Ecology Progress Series | 2013
James R. Lovvorn; Susan De La Cruz; Laura E. Shaskey; Samantha E. Richman
Marine Ecology Progress Series | 2012
Erica K. Lok; Daniel Esler; Susan De La Cruz; W. Sean Boyd; David R. Nysewander; Joseph R. Evenson; David H. Ward