Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Bush is active.

Publication


Featured researches published by Susan E. Bush.


Oecologia | 2008

Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees.

Susan E. Bush; Diane E. Pataki; K. R. Hultine; Adam G. West; John S. Sperry; James R. Ehleringer

Plant transpiration is strongly constrained by hydraulic architecture, which determines the critical threshold for cavitation. Because species vary greatly in vulnerability to cavitation, hydraulic limits to transpiration and stomatal conductance have not generally been incorporated into ecological and climate models. We measured sap flow, leaf transpiration, and vulnerability to cavitation of a variety of tree species in a well-irrigated but semi-arid urban environment in order to evaluate the generality of stomatal responses to high atmospheric vapor pressure deficit (D). We found evidence of broad patterns of stomatal responses to humidity based on systematic differences in vulnerability to cavitation. Ring-porous taxa consistently had vulnerable xylem and showed strong regulation of transpiration in response to D, while diffuse-porous taxa were less vulnerable and transpiration increased nearly linearly with D. These results correspond well to patterns in the distribution of the taxa, such as the prevalence of diffuse-porous species in riparian ecosystems, and also provide a means of representing maximum transpiration rates at varying D in broad categories of trees.


Tree Physiology | 2010

Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees

Susan E. Bush; K. R. Hultine; John S. Sperry; James R. Ehleringer

Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be associated with substantial error.


Ecological Applications | 2005

ECOHYDROLOGY IN A COLORADO RIVER RIPARIAN FOREST: IMPLICATIONS FOR THE DECLINE OF POPULUS FREMONTII

Diane E. Pataki; Susan E. Bush; P. Gardner; D. K. Solomon; James R. Ehleringer

Populus fremontii (Fremont cottonwood) was once a dominant species in desert riparian forests but has been increasingly replaced by the exotic invasive Tamarix ramosissima (saltcedar). Interspecific competition, reduced flooding frequency, and in- creased salinity have been implicated in the widespread decline of P. fremontii. To elucidate some of the multiple and interacting mechanisms of this decline, we examined ecological processes in a control stand of P. fremontii along the Colorado River in Utah, USA, as well as a disturbed stand characterized by high groundwater salinity and invasion of T. ramosissima. Sap flux data showed that P. fremontii at the saline site experienced large reductions in afternoon canopy stomatal conductance relative to the control. Thus, average daily stand transpiration was 4.8 6 0.1 mm/d at the saline site in comparison to 9.3 6 0.2 mm/d at the control site over a two-month period. Light-saturated photosynthesis and apparent quantum yield were also reduced in saline P. fremontii. Stable isotope analysis indicated that trees at the saline site utilized evaporatively enriched groundwater that was likely derived from a nearby pond of irrigation runoff; this was also the probable source of high salinity. Interspecific competition for water at the saline site is unlikely, as T. ramosissima is still a minor species that is present only in the understory. However, reduced tissue N content in P. fremontii at the saline site suggested that physiological stress during salinity and halophyte invasion may be exacerbated by altered N relations.


Oecologia | 2007

Population structure, physiology and ecohydrological impacts of dioecious riparian tree species of western North America

K. R. Hultine; Susan E. Bush; Adam G. West; James R. Ehleringer

The global water cycle is intimately linked to vegetation structure and function. Nowhere is this more apparent than in the arid west where riparian forests serve as ribbons of productivity in otherwise mostly unproductive landscapes. Dioecy is common among tree species that make up western North American riparian forests. There are intrinsic physiological differences between male and female dioecious riparian trees that may influence population structure (i.e., the ratio of male to female trees) and impact ecohydrology at large scales. In this paper, we review the current literature on sex ratio patterns and physiology of dioecious riparian tree species. Then develop a conceptual framework of the mechanisms that underlie population structure of dominant riparian tree species. Finally, we identify linkages between population structure and ecohydrological processes such as evapotranspiration and streamflow. A more thorough understanding of the mechanisms that underlie population structure of dominant riparian tree species will enable us to better predict global change impacts on vegetation and water cycling at multiple scales.


Ecological Applications | 2010

Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal

K. R. Hultine; Susan E. Bush; James R. Ehleringer

Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater sensitivity to interannual reductions in water availability, while willow is more sensitive to longer periods of soil water depletion. These data shed light on the linkage between soil water deficits and ecophysiological processes of threatened riparian forests given potential land-use and long-term drought impacts on freshwater resources.


Journal of Geophysical Research | 2007

Effect of gender on sap‐flux‐scaled transpiration in a dominant riparian tree species: Box elder (Acer negundo)

K. R. Hultine; Susan E. Bush; Adam G. West; James R. Ehleringer

[1] Acer negundo is a dioecious riparian tree species with a spatial segregation of the sexes along soil moisture gradients. Females are typically more common in wet sites along streams (typically F/M � 1.6), whereas males are more common in drier sites away from streams (typically F/M � 0.6). Spatial segregation between sexes may develop because of the higher reproductive cost in females compared to males. If so, female Acer negundo trees would be under stronger selection to maximize resource uptake, and would therefore likely occur at greater frequencies in high resources sites (i.e., along streamsides), and increase rates of resource acquisition (i.e., water and nutrients). The spatial segregation of the sexes leads to the hypothesis that male and female individuals have varying influence on ecosystem evapotranspiration. To address this, stem sap flux was measured on mature streamside (� 1 m from stream channel) and nonstreamside (>1 m from stream channel) male and female Acer negundo trees occurring in Red Butte Canyon near Salt Lake City, Utah, during the 2004 growing season. Despite having similar predawn and midday water potentials, sap flux density was 76% higher in streamside female trees than in males (P < 0.0001), while sap flux density was 19% greater in nonstreamside female trees compared to males (P < 0.0001). Mean daily sap flux density of all A. negundo populations was highly correlated with mean daily vapor pressure deficit (P < 0.0001), and was moderately correlated with mean daily photosynthetic active radiation (P = 0.0263). At the watershed scale, nonstreamside male and female A. negundo trees contributed 20 and 21% respectively to the estimated 1.7 mm d � 1 transpiration flux from dominant riparian vegetation away from streamsides (estimated from scaled sap flux measurements of all dominant riparian tree species in Red Butte Canyon). Male and female A. negundo trees contributed 31 and 46% respectively of the estimated 8.0 mm d � 1 transpiration flux from dominant riparian vegetation adjacent to the stream channel. Results from this investigation show that the population structure of dioecious riparian trees has direct consequences on ecosystem ET, particularly along stream margins. Shifts in population structure therefore, may have profound impacts on several ecohydrological processes including stream discharge, biogeochemical cycling, and ecosystem productivity.


Stable Isotopes and Biosphere Atmosphere Interactions#R##N#Processes and Biological Controls | 2005

Stable Isotopes as a Tool in Urban Ecology

Diane E. Pataki; Susan E. Bush; James R. Ehleringer

Land–atmosphere exchange in urban areas is relevant to several areas of global change research, including alterations to global carbon and water cycles and the effect of urbanization on regional landscapes. At present, the dynamics of land-atmosphere exchange in cities are poorly understood in regard to trace gas fluxes. As several major components of urban CO 2 emissions contain distinct combinations of stable isotopes and radioisotopes, isotope measurements are a promising method for understanding the dynamics of urban CO 2 sources, the influence of cities on the isotopic composition of atmospheric CO 2 , and the effects of local urban atmospheres on plant function. While this chapter focuses on the utility of measurements of the isotopic composition of urban CO 2 and organic material, stable isotopes offer other opportunities for urban ecological research in measurements of water, methane, hydrocarbons, and other constituents of urban ecosystems.


Journal of Geophysical Research | 2016

Spatial patterns and source attribution of urban methane in the Los Angeles Basin

Francesca M. Hopkins; Eric A. Kort; Susan E. Bush; James R. Ehleringer; Chun-Ta Lai; D. R. Blake; James T. Randerson

Urban areas are increasingly recognized as a globally important source of methane to the atmosphere; however, the location of methane sources and relative contributions of source sectors are not well known. Recent atmospheric measurements in Los Angeles, California, USA, show that more than a third of the citys methane emissions are unaccounted for in inventories and suggest that fugitive fossil emissions are the unknown source. We made on-road measurements to quantify fine-scale structure of methane and a suite of complementary trace gases across the Los Angeles Basin in June 2013. Enhanced methane levels were observed across the basin but were unevenly distributed in space. We identified 213 methane hot spots from unknown emission sources. We made direct measurements of ethane to methane (C_2H_6/CH_4) ratios of known methane emission sources in the region, including cattle, geologic seeps, landfills, and compressed natural gas fueling stations, and used these ratios to determine the contribution of biogenic and fossil methane sources to unknown hot spots and to local urban background air. We found that 75% of hot spots were of fossil origin, 20% were biogenic, and 5% of indeterminate source. In regionally integrated air, we observed a wider range of C_2H_6/CH_4 values than observed previously. Fossil fuel sources accounted for 58–65% of methane emissions, with the range depending on the assumed C_2H_6/CH_4 ratio of source end-members and model structure. These surveys demonstrated the prevalence of fugitive methane emissions across the Los Angeles urban landscape and suggested that uninventoried methane sources were widely distributed and primarily of fossil origin.


Earth’s Future | 2016

Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

Francesca M. Hopkins; James R. Ehleringer; Susan E. Bush; Riley M. Duren; Charles E. Miller; Chun-Ta Lai; Ying Kuang Hsu; Valerie Carranza; James T. Randerson

Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane emissions. Here we develop a conceptual framework for methane mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban methane emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from 4 North American cities to demonstrate that methane emissions vary in magnitude and sector from city to city, and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban methane emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric methane levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives, and should be deployed in cities globally. We suggest that metropolitan-scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth

Logan Mitchell; John C. Lin; David R. Bowling; Diane E. Pataki; Courtenay Strong; Andrew J. Schauer; Ryan Bares; Susan E. Bush; Britton B. Stephens; Daniel Mendoza; Derek V. Mallia; Lacey Holland; Kevin Robert Gurney; James R. Ehleringer

Significance Recent efforts to reduce greenhouse gas emissions have focused on cities due to intensive emissions, viable policy levers, and interested stakeholders. Atmospheric observations can be used to independently evaluate emissions, but suitable networks are sparse. We present a unique decadal record of atmospheric CO2 from five sites with contrasting urban characteristics that show divergent trends in CO2 emissions across a city. Comparison with population growth reveals a nonlinear relationship that may reflect how urban form affects CO2 emissions. Four state-of-the-art global-scale emission inventories capture the nonlinear relationship with population density but not the divergent long-term trends across the city. This demonstrates that CO2 monitoring networks can provide insight into urban carbon cycle processes and provide policy-relevant information to urban stakeholders. Cities are concentrated areas of CO2 emissions and have become the foci of policies for mitigation actions. However, atmospheric measurement networks suitable for evaluating urban emissions over time are scarce. Here we present a unique long-term (decadal) record of CO2 mole fractions from five sites across Utah’s metropolitan Salt Lake Valley. We examine “excess” CO2 above background conditions resulting from local emissions and meteorological conditions. We ascribe CO2 trends to changes in emissions, since we did not find long-term trends in atmospheric mixing proxies. Three contrasting CO2 trends emerged across urban types: negative trends at a residential-industrial site, positive trends at a site surrounded by rapid suburban growth, and relatively constant CO2 over time at multiple sites in the established, residential, and commercial urban core. Analysis of population within the atmospheric footprints of the different sites reveals approximately equal increases in population influencing the observed CO2, implying a nonlinear relationship with CO2 emissions: Population growth in rural areas that experienced suburban development was associated with increasing emissions while population growth in the developed urban core was associated with stable emissions. Four state-of-the-art global-scale emission inventories also have a nonlinear relationship with population density across the city; however, in contrast to our observations, they all have nearly constant emissions over time. Our results indicate that decadal scale changes in urban CO2 emissions are detectable through monitoring networks and constitute a valuable approach to evaluate emission inventories and studies of urban carbon cycles.

Collaboration


Dive into the Susan E. Bush's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun-Ta Lai

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca M. Hopkins

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam G. West

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaomei Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge