Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Marcus is active.

Publication


Featured researches published by Susan E. Marcus.


Journal of Histochemistry and Cytochemistry | 2005

Monoclonal antibodies to plant cell wall xylans and arabinoxylans

Lesley McCartney; Susan E. Marcus; J. Paul Knox

Two rat monoclonal antibodies have been generated to plant cell wall (1→4)-β-D-xylans using a penta-1,4-xylanoside-containing neoglycoprotein as an immunogen. The monoclonal antibodies, designated LM10 and LM11, have different specificities to xylans in relation to the substitution of the xylan backbone as indicated by immunodot assays and competitive-inhibition ELISAs. LM10 is specific to unsubstituted or low-substituted xylans, whereas LM11 binds to wheat arabinoxylan in addition to unsubstituted xylans. Immunocytochemical analyses indicated the presence of both epitopes in secondary cell walls of xylem but differences in occurrence in other cell types.


BMC Plant Biology | 2008

Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

Susan E. Marcus; Yves Verhertbruggen; Cécile Hervé; José J. Ordaz-Ortiz; Vladimír Farkaš; Henriette L. Pedersen; William G. T. Willats; J. Paul Knox

BackgroundMolecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.ResultsUsing a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types.ConclusionThese observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.


Carbohydrate Research | 2009

An extended set of monoclonal antibodies to pectic homogalacturonan

Yves Verhertbruggen; Susan E. Marcus; Ash Haeger; José J. Ordaz-Ortiz; J. Paul Knox

Three novel rat monoclonal antibodies, designated LM18, LM19 and LM20, were isolated from screens for binding to Arabidopsis thaliana seed coat mucilage. The binding of these antibodies to mucilage subject to enzyme and high pH pre-treatments and to a series of model homogalacturonan-rich pectins with defined levels of methyl-esterification indicated their recognition of pectic homogalacturonan epitopes. The binding capacities of these monoclonal antibodies to cell walls in sections of tobacco stem pith parenchyma were also differentially sensitive to equivalent treatments with high pH buffers and pectate lyase. The epitopes bound by these antibodies display some similarities and some differences to the epitopes recognized by the previously isolated and established pectic homogalacturonan probes JIM5 and JIM7.


Plant Journal | 2010

Restricted access of proteins to mannan polysaccharides in intact plant cell walls

Susan E. Marcus; Anthony W. Blake; Thomas A.S. Benians; Kieran J.D. Lee; Callum Poyser; Lloyd Donaldson; Olivier Leroux; Artur Rogowski; Henriette L. Petersen; Alisdair B. Boraston; Harry J. Gilbert; William G. T. Willats; J. Paul Knox

How the diverse polysaccharides present in plant cell walls are assembled and interlinked into functional composites is not known in detail. Here, using two novel monoclonal antibodies and a carbohydrate-binding module directed against the mannan group of hemicellulose cell wall polysaccharides, we show that molecular recognition of mannan polysaccharides present in intact cell walls is severely restricted. In secondary cell walls, mannan esterification can prevent probe recognition of epitopes/ligands, and detection of mannans in primary cell walls can be effectively blocked by the presence of pectic homogalacturonan. Masking by pectic homogalacturonan is shown to be a widespread phenomenon in parenchyma systems, and masked mannan was found to be a feature of cell wall regions at pit fields. Direct fluorescence imaging using a mannan-specific carbohydrate-binding module and sequential enzyme treatments with an endo-β-mannanase confirmed the presence of cryptic epitopes and that the masking of primary cell wall mannan by pectin is a potential mechanism for controlling cell wall micro-environments.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects

Cécile Hervé; Artur Rogowski; Anthony W. Blake; Susan E. Marcus; Harry J. Gilbert; J. Paul Knox

Cell wall degrading enzymes have a complex molecular architecture consisting of catalytic modules and noncatalytic carbohydrate-binding modules (CBMs). The function of CBMs in cell wall degrading processes is poorly understood. Here, we have evaluated the potential enzyme-targeting function of CBMs in the context of intact primary and secondary cell wall deconstruction. The capacity of a pectate lyase to degrade pectic homogalacturonan in primary cell walls was potentiated by cellulose-directed CBMs but not by xylan-directed CBMs. Conversely, the arabinofuranosidase-mediated removal of side chains from arabinoxylan in xylan-rich and cellulose-poor wheat grain endosperm cell walls was enhanced by a xylan-binding CBM but less so by a crystalline cellulose-specific module. The capacity of xylanases to degrade xylan in secondary cell walls was potentiated by both xylan- and cellulose-directed CBMs. These studies demonstrate that CBMs can potentiate the action of a cognate catalytic module toward polysaccharides in intact cell walls through the recognition of nonsubstrate polysaccharides. The targeting actions of CBMs therefore have strong proximity effects within cell wall structures, explaining why cellulose-directed CBMs are appended to many noncellulase cell wall hydrolases.


Journal of Biological Chemistry | 2012

Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

Henriette L. Pedersen; Jonatan U. Fangel; Barry McCleary; Christian Ruzanski; Maja G. Rydahl; Marie-Christine Ralet; Vladimír Farkaš; Laura von Schantz; Susan E. Marcus; Mathias Christian Franch Andersen; Robert A. Field; Mats Ohlin; J. Paul Knox; Mads Hartvig Clausen; William G. T. Willats

Background: Microarrays of plant-derived oligosaccharides are potentially powerful tools for the high throughput discovery and screening of antibodies, enzymes, and carbohydrate-binding proteins. Results: Oligosaccharide microarrays were produced, and their utility was demonstrated in several applications. Conclusion: A new generation of oligosaccharide microarrays will make an important contribution to plant glycomic research. Significance: High throughput screening technology enables the more effective production of carbohydrate active enzymes and molecular probes. Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.


Glycoconjugate Journal | 2008

High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

Isabel Moller; Susan E. Marcus; Ash Haeger; Yves Verhertbruggen; René Verhoef; Henk A. Schols; Peter Ulvskov; Jørn Dalgaard Mikkelsen; J. Paul Knox; William G. T. Willats

Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials.


Plant Physiology | 2011

Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea

Yuzuki Manabe; Majse Nafisi; Yves Verhertbruggen; Caroline Orfila; Sascha Gille; Carsten Rautengarten; Candice Cherk; Susan E. Marcus; Shauna Somerville; Markus Pauly; J. Paul Knox; Yumiko Sakuragi; Henrik Vibe Scheller

Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.


Molecular Plant | 2011

Cell Wall Biology: Perspectives from Cell Wall Imaging

Kieran J.D. Lee; Susan E. Marcus; J. Paul Knox

Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.


Planta | 2004

A xylogalacturonan epitope is specifically associated with plant cell detachment

William G. T. Willats; Lesley McCartney; Clare G. Steele-King; Susan E. Marcus; Andrew J. Mort; M.M.H. Huisman; Gert-Jan W. M. van Alebeek; Henk A. Schols; A.G.J. Voragen; Angélique Le Goff; Estelle Bonnin; Jean-François Thibault; J. Paul Knox

A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified that is specifically associated with a plant cell separation process that results in complete cell detachment.

Collaboration


Dive into the Susan E. Marcus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Verhertbruggen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie-Christine Ralet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mads Hartvig Clausen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Maja G. Rydahl

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge