Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Scanlon is active.

Publication


Featured researches published by Susan E. Scanlon.


Science Translational Medicine | 2017

2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity

Parker Sulkowski; Christopher D. Corso; Nathaniel D. Robinson; Susan E. Scanlon; Karin R. Purshouse; Hanwen Bai; Yanfeng Liu; Ranjini K. Sundaram; Denise C. Hegan; Nathan R. Fons; Gregory A. Breuer; Yuanbin Song; Henk M. De Feyter; Robin A. de Graaf; Yulia V. Surovtseva; Maureen Kachman; Stephanie Halene; Murat Gunel; Peter M. Glazer; Ranjit S. Bindra

The oncometabolite 2-hydroxyglutarate renders IDH1/2 mutant cancer cells deficient in homologous recombination and confers vulnerability to synthetic lethal targeting with PARP inhibitors. Target 2HG or not 2HG, that is the question Mutations in isocitrate dehydrogenase 1 and 2, which result in overproduction of 2-hydroxyglutarate (2HG), are observed in multiple tumor types, including gliomas and acute myelogenous leukemia. An additional form of 2HG is produced under hypoxia, which is also frequent in tumors. 2HG is considered to be an oncometabolite, or a metabolite that promotes carcinogenesis, and inhibitors of mutant isocitrate dehydrogenase are in development to target this process. However, Sulkowski et al. found that it may be possible to take advantage of 2HG overproduction instead. The authors discovered that 2HG overproduction impairs homologous recombination used in DNA repair and sensitizes cancer cells to treatment with PARP inhibitors, another class of cancer drugs that are already in clinical use. 2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)–dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5′-diphosphate–ribose) polymerase (PARP) inhibitors. This “BRCAness” phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1–dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability.


DNA Repair | 2015

Multifaceted Control of DNA Repair Pathways by the Hypoxic Tumor Microenvironment

Susan E. Scanlon; Peter M. Glazer

Hypoxia, as a pervasive feature in the microenvironment of solid tumors, plays a significant role in cancer progression, metastasis, and ultimately clinical outcome. One key cellular consequence of hypoxic stress is the regulation of DNA repair pathways, which contributes to the genomic instability and mutator phenotype observed in human cancers. Tumor hypoxia can vary in severity and duration, ranging from acute fluctuating hypoxia arising from temporary blockages in the immature microvasculature, to chronic moderate hypoxia due to sparse vasculature, to complete anoxia at distances more than 150 μM from the nearest blood vessel. Paralleling the intra-tumor heterogeneity of hypoxia, the effects of hypoxia on DNA repair occur through diverse mechanisms. Acutely, hypoxia activates DNA damage signaling pathways, primarily via post-translational modifications. On a longer timescale, hypoxia leads to transcriptional and/or translational downregulation of most DNA repair pathways including DNA double-strand break repair, mismatch repair, and nucleotide excision repair. Furthermore, extended hypoxia can lead to long-term persistent silencing of certain DNA repair genes, including BRCA1 and MLH1, revealing a mechanism by which tumor suppressor genes can be inactivated. The discoveries of the hypoxic modulation of DNA repair pathways have highlighted many potential ways to target susceptibilities of hypoxic cancer cells. In this review, we will discuss the multifaceted hypoxic control of DNA repair at the transcriptional, post-transcriptional, and epigenetic levels, and we will offer perspective on the future of its clinical implications.


Molecular Cancer Research | 2014

Hypoxic Stress Facilitates Acute Activation and Chronic Downregulation of Fanconi Anemia Proteins

Susan E. Scanlon; Peter M. Glazer

Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of γH2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic downregulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein downregulation with prolonged hypoxia contributes to genomic instability. Implications: This work highlights the critical role of the FA pathway in response to hypoxic stress and identifies the pathway as a therapeutic target under hypoxic conditions. Mol Cancer Res; 12(7); 1016–28. ©2014 AACR.


Carcinogenesis | 2017

Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells

Susan E. Scanlon; Christine D. Scanlon; Denise C. Hegan; Parker Sulkowski; Peter M. Glazer

The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways.


Molecular Cancer Research | 2018

PTEN Regulates Nonhomologous End Joining By Epigenetic Induction of NHEJ1/XLF

Parker Sulkowski; Susan E. Scanlon; Peter M. Glazer

DNA double-strand breaks (DSB) are the most cytotoxic DNA lesions, and up to 90% of DSBs require repair by nonhomologous end joining (NHEJ). Functional and genomic analyses of patient-derived melanomas revealed that PTEN loss is associated with NHEJ deficiency. In PTEN-null melanomas, PTEN complementation rescued the NHEJ defect; conversely, suppression of PTEN compromised NHEJ. Mechanistic studies revealed that PTEN promotes NHEJ through direct induction of expression of XRCC4-like factor (NHEJ1/XLF), which functions in DNA end bridging and ligation. PTEN was found to occupy the NHEJ1 gene promoter and to recruit the histone acetyltransferases, PCAF and CBP, inducing XLF expression. This recruitment activity was found to be independent of its phosphatase activity, but dependent on K128, a site of regulatory acetylation on PTEN. These findings define a novel function for PTEN in regulating NHEJ DSB repair, and therefore may assist in the design of individualized strategies for cancer therapy. Implications: PTEN is the second most frequently lost tumor suppressor gene. Here it is demonstrated that PTEN has a direct and novel regulatory role in NHEJ, a key DNA repair pathway in response to radiation and chemotherapy. Mol Cancer Res; 16(8); 1241–54. ©2018 AACR.


Molecular therapy. Nucleic acids | 2017

Anti-tumor Activity of miniPEG-γ-Modified PNAs to Inhibit MicroRNA-210 for Cancer Therapy

Anisha Gupta; Elias Quijano; Yanfeng Liu; Raman Bahal; Susan E. Scanlon; Eric Song; Wei-Che Hsieh; Demetrios E. Braddock; Danith H. Ly; W. Mark Saltzman; Peter M. Glazer

MicroRNAs (miRs) are frequently overexpressed in human cancers. In particular, miR-210 is induced in hypoxic cells and acts to orchestrate the adaptation of tumor cells to hypoxia. Silencing oncogenic miRs such as miR-210 may therefore offer a promising approach to anticancer therapy. We have developed a miR-210 inhibition strategy based on a new class of conformationally preorganized antisense γ peptide nucleic acids (γPNAs) that possess vastly superior RNA-binding affinity, improved solubility, and favorable biocompatibility. For cellular delivery, we encapsulated the γPNAs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). Our results show that γPNAs targeting miR-210 cause significant delay in growth of a human tumor xenograft in mice compared to conventional PNAs. Further, histopathological analyses show considerable necrosis, fibrosis, and reduced cell proliferation in γPNA-treated tumors compared to controls. Overall, our work provides a chemical framework for a novel anti-miR therapeutic approach using γPNAs that should facilitate rational design of agents to potently inhibit oncogenic microRNAs.


Cancer Research | 2016

Abstract LB-029: Negative transcriptional and epigenetic regulation of DNA repair pathways by the heavy metals nickel and arsenic

Susan E. Scanlon; Christine D. Scanlon; Denise C. Hegan; Parker Sulkowski; Peter M. Glazer

Environmental exposure to certain heavy metals, such as nickel and arsenic, has been implicated in a variety of human cancers, including lung, skin, digestive track, and bladder cancers. Importantly, the mechanism underlying the carcinogenicity of nickel and arsenic remains poorly understood as they do not induce direct DNA mutagenesis. However, they do lead to global changes in chromatin structure and transcription, many similar to the effects of hypoxia. Since hypoxia is known to regulate many different DNA repair pathways, we investigated whether nickel and arsenic may similarly affect cellular DNA repair. We discovered that nickel and arsenic can lead to alterations in DNA repair gene expression, stable gene silencing, and decreased DNA repair capacity. First, we measured protein and mRNA levels of different DNA repair genes after NiCl2 or NaAsO2 treatment. We found that both metals induced down-regulation of BRCA1, FANCD2, and MLH1 over 24 to 48 hours at both the protein and mRNA levels. These results were observed in several different cells lines (HeLa, MCF7, BEAS-2B) with one notable exception that high dose arsenic induced up-regulation of BRCA1, FANCD2, and MLH1 in lung cancer-derived cell lines (A549, HCC827, NCI-H460). Next, to study the impact of long-term heavy metal exposure on DNA repair gene expression, we utilized an MLH1 promoter reporter construct that allows selection of cells harboring a silenced MLH1 promoter with ganciclovir. RKO cells stably expressing this construct were grown in the presence of 100 μM NiCl2, 0.5 μM NaAsO2, 1% oxygen, or control conditions. After 3 weeks, we observed that arsenic treatment, like hypoxia, led to a significant increase in promoter silencing compared to control cells, peaking at about 3.7-fold after 4 weeks. Nickel did not increase silencing, which may indicate a different mechanism of gene regulation. Finally, we used a luciferase assay to measure the effect of nickel and arsenic on the two primary DNA double-strand break (DSB) repair mechanisms, homologous recombination (HR) and non-homologous end joining (NHEJ). BEAS-2B cells pretreated with 250 μM NiCl2 or 5 μM NaAsO2 were transfected with a digested, inactive luciferase plasmid and allowed to conduct DSB repair to reactivate luciferase expression. We found that nickel and arsenic led to a 40-50% reduction in cellular HR capacity with no significant effect on NHEJ. To further pursue these results, we are performing chromatin immunoprecipitation studies to identify transcriptional or epigenetic factors mediating nickel and arsenic-induced down-regulation of DNA repair genes. In addition, we are using chromosomal-based assays to further characterize the impact of nickel and arsenic on DNA repair capacity. In conclusion, we have found that nickel and arsenic negatively regulate cellular DNA repair pathways, identifying a novel way in which heavy metals may contribute to carcinogenesis. Citation Format: Susan E. Scanlon, Christine D. Scanlon, Denise C. Hegan, Parker Sulkowski, Peter M. Glazer. Negative transcriptional and epigenetic regulation of DNA repair pathways by the heavy metals nickel and arsenic. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-029.


Cancer Research | 2017

Abstract 2480: Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity inVHL-deficient human renal cell carcinoma

Susan E. Scanlon; Parker Sulkowski; Peter M. Glazer

The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in the vast majority of human clear cell renal carcinomas. The pathogenesis of VHL loss is currently best understood to occur through stabilization of the hypoxia-inducible factors, activation of hypoxia-induced signaling pathways, and transcriptional reprogramming towards a pro-angiogenic and pro-growth state. However, hypoxia also drives other pro-tumorigenic processes, including the development of genomic instability via down-regulation of DNA repair gene expression. Here, we find that DNA repair genes involved in double-strand break repair by homologous recombination (HR) and in mismatch repair, which are down-regulated by hypoxic stress, are decreased in VHL-deficient renal cancer cells relative to wild type VHL-complemented cells. Non-homologous end joining (NHEJ) genes are not decreased in VHL-deficient cells, demonstrating specificity of the down-regulation and similarity to hypoxia. Functionally, this repression of HR genes is associated with impaired DNA double-strand break repair in VHL-deficient cells, as determined by the persistence of ionizing radiation-induced DNA double-strand breaks and reduced activity in a homology-dependent plasmid reactivation assay. Furthermore, VHL deficiency conferred increased sensitivity to the DNA crosslinking agent mitomycin C and PARP inhibitors, analogous to the synthetic lethality observed between hypoxia and these chemotherapeutic agents. Finally, we discovered a correlation between VHL inactivation and reduced HR, but not NHEJ, gene expression in a large panel of human renal carcinoma samples. Together, our data elucidate a novel connection between VHL-deficient renal carcinoma and hypoxia-induced down-regulation of DNA repair, and identify potential opportunities for targeting DNA repair defects in human renal cell carcinoma. Citation Format: Susan E. Scanlon, Parker L. Sulkowski, Peter M. Glazer. Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2480. doi:10.1158/1538-7445.AM2017-2480


Cancer Research | 2017

Abstract LB-290: Oncometabolites induce a BRCAness state that can be exploited by PARP inhibitors

Parker Sulkowski; Christopher D. Corso; Nathaniel D. Robinson; Susan E. Scanlon; Karin R. Purshouse; Hanwen Bai; Yanfeng Liu; Ranjini K. Sundaram; Denise C. Hegan; Nathan R. Fons; Gregory A. Breuer; Yuanbin Song; Ketu Mishra; Henk M. De Feyter; Robin A. de Graaf; Yulia V. Surovtseva; Maureen T. Kachman; Stephanie Halene; Murat Gunel; Peter M. Glazer; Ranjit S. Bindra

2-Hydroxyglutarate (2HG) exists as two enantiomers, R-2HG and S-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase-1 and -2 (IDH1/2) mutations, while the latter is produced under pathologic process such as hypoxia. Recurring IDH1/2 mutations were first identified gliomas and acute myeloid leukemia (AML), and subsequently they were found in multiple other tumor types. Many IDH1/2-mutant tumors are known to be chemo- and radiosensitive, although the mechanisms underlying this enhanced sensitivity have been elusive. Here, we report that IDH1/2 mutations induce a homologous recombination (HR) defect which renders tumor cells exquisitely sensitive to Poly (ADP-Ribose) polymerase (PARP) inhibitors. Remarkably, this “BRCAness” phenotype can be completely reversed by small molecule mutant IDH1/2 inhibitors, and it can be entirely recapitulated by treatment with either 2HG enantiomer in cells with intact IDH1/2. We performed a comprehensive series of studies directly implicate two αKG-dependent dioxygenases, KDM4A and KDM4B, as key mediators of the observed phenotype. In addition, we demonstrate that 2HG-induced HR suppression cannot be explained by mutant IDH1/2-associated alterations in NAD+ levels. We have demonstrated IDH1/2-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells and AML bone marrow cultures in vitro, as well as genetically-matched tumor xenografts in vivo. Finally, we have extended these findings to several structurally related and clinically relevant oncometabolites. We demonstrate profound synthetic lethality with PARP inhibitors in tumors which produce these other oncometabolites, and our data suggest a similar mechanism of action via which HR is suppressed. Small molecule inhibition of oncogenic kinases is a pillar of precision medicine in modern oncology, and this approach has been extrapolated to treat IDH1/2-mutant and other oncometabolite-producing cancers with small molecule inhibitors which block the neomorphic activity of the mutant proteins. The findings present here directly challenge this therapeutic strategy, and they instead provide a novel approach to treat these tumors oncometabolite-producing tumors with DNA repair inhibitors. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair and genetic instability. We previously reported that hypoxia suppresses HR, driving genetic instability and conferring a BRCAness phenotype in hypoxic tumor cells. It is tempting to speculate that the findings reported here provide a novel commonality between hypoxia and IDH1/2 mutations as mediating a “hit-and-run” mechanism for genetic instability and tumor progression through 2HG, but at the same time bestowing a vulnerability to PARP inhibition that can be therapeutically exploited. Based on these findings, we are planning a multi-center Phase II trial testing the efficacy of olaparib for the treatment of recurrent IDH1/2-mutant tumors, and we anticipate this trial will be open for enrollment later this year. Citation Format: Parker Sulkowski, Christopher Corso, Nathaniel Robinson, Susan Scanlon, Karin Purshouse, Hanwen Bai, Yanfeng Liu, Ranjini Sundaram, Denise Hegan, Nathan Fons, Gregory Breuer, Yuanbin Song, Ketu Mishra, Henk De Feyter, Robin de Graaf, Yulia Surovtseva, Maureen Kachman, Stephanie Halene, Murat Gunel, Peter Glazer, Ranjit S. Bindra. Oncometabolites induce a BRCAness state that can be exploited by PARP inhibitors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-290. doi:10.1158/1538-7445.AM2017-LB-290


Yale Journal of Biology and Medicine | 2013

Hypoxia and DNA repair.

Peter M. Glazer; Denise C. Hegan; Yuhong Lu; Jennifer Czochor; Susan E. Scanlon

Collaboration


Dive into the Susan E. Scanlon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge