Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Slade is active.

Publication


Featured researches published by Susan E. Slade.


Journal of Proteome Research | 2009

A Comparison of Labeling and Label-Free Mass Spectrometry-Based Proteomics Approaches

Vibhuti J. Patel; Konstantinos Thalassinos; Susan E. Slade; Joanne B. Connolly; Andrew Crombie; J. C. Murrell; James H. Scrivens

The proteome of the recently discovered bacterium Methylocella silvestris has been characterized using three profiling and comparative proteomics approaches. The organism has been grown on two different substrates enabling variations in protein expression to be identified. The results obtained using the experimental approaches have been compared with respect to number of proteins identified, confidence in identification, sequence coverage and agreement of regulated proteins. The sample preparation, instrumental time and sample loading requirements of the differing experiments are compared and discussed. A preliminary screen of the protein regulation results for biological significance has also been performed.


Analytical Chemistry | 2009

Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry

Konstantinos Thalassinos; Megan Grabenauer; Susan E. Slade; Gillian R. Hilton; Michael T. Bowers; James H. Scrivens

Phosphorylation is one the most studied and important post translational modifications. Nano electrospray mass spectrometry coupled with traveling wave (T-Wave)-based ion mobility has been used to filter for phosphorylated peptides in tryptic protein digests. T-Wave parameters have been optimized to maximize the separation between phosphorylated and non-phosphorylated peptides. A method to calibrate the T-Wave device, to provide estimates of collision cross sections, is presented, and these estimates are in excellent agreement with values obtained on drift cell instrumentation. Phosphorylated peptides have smaller cross sections which enables their separation from non-phosphorylated peptides of the same m/z. Post-mobility fragmentation is used to obtain the primary sequence for peptides of interest. This approach is shown to have potential as an additional screen for phosphorylated peptides, where up to 40% of observed peptides can be eliminated from the study.


BMC Microbiology | 2011

A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis

Luis G. C. Pacheco; Susan E. Slade; Núbia Seyffert; Anderson Rodrigues dos Santos; Thiago Luiz de Paula Castro; Wanderson M. Silva; Agenor V. Santos; Simone Gonçalves dos Santos; Luiz de Macêdo Farias; M.A.R. Carvalho; Adriano M.C. Pimenta; Roberto Meyer; Artur Silva; James H. Scrivens; Sergio C. Oliveira; Anderson Miyoshi; Christopher G. Dowson; Vasco Azevedo

BackgroundBacterial exported proteins represent key components of the host-pathogen interplay. Hence, we sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and goats.ResultsAn optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome. Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of most of the remaining proteins.ConclusionsComparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far.


Journal of the American Society for Mass Spectrometry | 2010

Structural analysis of prion proteins by means of drift cell and traveling wave ion mobility mass spectrometry

Gillian R. Hilton; Konstantinos Thalassinos; Megan Grabenauer; Narinder Sanghera; Susan E. Slade; Thomas Wyttenbach; Philip J. Robinson; Teresa J. T. Pinheiro; Michael T. Bowers; James H. Scrivens

The prion protein (PrP) is implicitly involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). The conversion of normal cellular PrP (PrPC), a protein that is predominantly α-helical, to a β-sheet-rich isoform (PrPSc), which has a propensity to aggregate, is the key molecular event in prion diseases. During its short life span, PrP can experience two different pH environments; a mildly acidic environment, whilst cycling within the cell, and a neutral pH when it is glycosyl phosphatidylinositol (GPI)-anchored to the cell membrane. Ion mobility (IM) combined with mass spectrometry has been employed to differentiate between two conformational isoforms of recombinant Syrian hamster prion protein (SHaPrP). The recombinant proteins studied were α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5 and pH 7.0. The recombinant proteins have the same nominal mass-to-charge ratio (m/z) but differ in their secondary and tertiary structures. A comparison of traveling-wave (T-Wave) ion mobility and drift cell ion mobility (DCIM) mass spectrometry estimated and absolute cross-sections showed an excellent agreement between the two techniques. The use of T-Wave ion mobility as a shape-selective separation technique enabled differentiation between the estimated cross-sections and arrival time distributions (ATDs) of α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5. No differences in cross-section or ATD profiles were observed between the protein isoforms at pH 7.0. The findings have potential implications for a new ante-mortem screening assay, in bodily fluids, for prion misfolding diseases such as TSEs.


Applied and Environmental Microbiology | 2002

Improved System for Protein Engineering of the Hydroxylase Component of Soluble Methane Monooxygenase

Thomas J. Smith; Susan E. Slade; N. P. Burton; J. C. Murrell; Howard Dalton

ABSTRACT Soluble methane monooxygenase (sMMO) of Methylosinustrichosporium OB3b is a three-component oxygenase that catalyses the O2- and NAD(P)H-dependent oxygenation of methane and numerous other substrates. Despite substantial interest in the use of genetic techniques to study the mechanism of sMMO and manipulate its substrate specificity, directed mutagenesis of active-site residues was previously impossible because no suitable heterologous expression system had been found for expression in a highly active form of the hydroxylase component, which is an (αβγ)2 complex containing the binuclear iron active site. A homologous expression system that enabled the expression of recombinant wild-type sMMO in a derivative of M. trichosporium OB3b from which the chromosomal copy of the sMMO-encoding operon had been partially deleted was previously reported. Here we report substantial development of this method to produce a system for the facile construction and expression of mutants of the hydroxylase component of sMMO. This new system has been used to investigate the functions of Cys 151 and Thr 213 of the α subunit, which are the only nonligating protonated side chains in the hydrophobic active site. Both residues were found to be critical for the stability and/or activity of sMMO, but neither was essential for oxygenation reactions. The T213S mutant was purified to >98% homogeneity. It had the same iron content as the wild type and had 72% wild-type activity toward toluene but only 17% wild-type activity toward propene; thus, its substrate profile was significantly altered. With these results, we have demonstrated proof of the principle for protein engineering of this uniquely versatile enzyme.


Plant Physiology | 2015

Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane

Verena Kriechbaumer; Stanley W. Botchway; Susan E. Slade; Kirsten Knox; Lorenzo Frigerio; Karl J. Oparka; Chris Hawes

Protein interactions for two plasmodesmata-localized reticulon proteins suggest that these proteins, in addition to a role in endoplasmic reticulum modeling, may play important roles in linking the endoplasmic reticulum and plasma membrane. The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.


Journal of Pharmaceutical and Biomedical Analysis | 2013

A rapid method for the determination of artemisinin and its biosynthetic precursors in Artemisia annua L. crude extracts

John O. Suberu; Lijiang Song; Susan E. Slade; Neil Sullivan; Guy C. Barker; Alexei Lapkin

A rapid high-pressure liquid chromatography (HPLC) tandem mass spectrometry (TQD) method for the determination of artemisinin, 9-epi-artemisinin, artemisitene, dihydroartemisinic acid, artemisinic acid and arteannuin B in Artemisia annua extracts is described. Detection and quantification of 9-epi-artemisinin in crude extracts are reported for the first time. In this method all six metabolites are resolved and eluted within 6 min with minimal sample preparation. A recovery of between 96.25% and 103.59% was obtained for all metabolites analysed and the standard curves were linear (r(2)>0.99) over the concentration range of 0.15-10 μg mL(-1) for artemisinin, 9-epi-artemisinin, artemisitene and arteannuin B, and the range of 3.75-120 μg mL(-1) for dihydroartemisinic acid and artemisinic acid. All validation indices were satisfactory, showing the method to be robust, quick, sensitive and adequate for a range of applications including high throughput (HTP) analysis.


Journal of the American Chemical Society | 2010

Conformational stability of Syrian hamster prion protein PrP(90-231).

Megan Grabenauer; Thomas Wyttenbach; Narinder Sanghera; Susan E. Slade; Teresa J. T. Pinheiro; James H. Scrivens; Michael T. Bowers

Many transmissible spongiform encephalopathies (TSEs) are believed to be caused by a misfolded form of the normal cellular prion protein (PrP(C)) known as PrP(Sc). While PrP(Sc) is known to be exceptionally stable and resistant to protease degradation, PrP(C) has not shown these same unusual characteristics. However, using ion mobility spectrometry mass spectrometry (IMS-MS), we found evidence for at least one very stable conformation of a truncated form of recombinant PrP(C) consisting of residues 90-231, which resists unfolding in the absence of solvent at high injection energies and at temperatures in excess of 600 K. We also report the first absolute collision cross sections measured for recombinant Syrian hamster prion protein PrP(90-231).


The Journal of Experimental Biology | 2013

Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish

Dean C. Semmens; Robyn E. Dane; Mahesh R. Pancholi; Susan E. Slade; James H. Scrivens; Maurice R. Elphick

SUMMARY Feeding in starfish is a remarkable process in which the cardiac stomach is everted over prey and then retracted when prey tissue has been resorbed. Previous studies have revealed that SALMFamide-type neuropeptides trigger cardiac stomach relaxation and eversion in the starfish Asterias rubens. We hypothesized, therefore, that a counteracting neuropeptide system controls cardiac stomach contraction and retraction. Members of the NG peptide family cause muscle contraction in other echinoderms (e.g. NGFFFamide in sea urchins and NGIWYamide in sea cucumbers), so we investigated NG peptides as candidate regulators of cardiac stomach retraction in starfish. Generation and analysis of neural transcriptome sequence data from A. rubens revealed a precursor protein comprising two copies of a novel NG peptide, NGFFYamide, which was confirmed by mass spectrometry. A noteworthy feature of the NGFFYamide precursor is a C-terminal neurophysin domain, indicative of a common ancestry with vasopressin/oxytocin-type neuropeptide precursors. Interestingly, in precursors of other NG peptides the neurophysin domain has been retained (e.g. NGFFFamide) or lost (e.g. NGIWYamide and human neuropeptide S) and its functional significance remains to be determined. Investigation of the pharmacological actions of NGFFYamide in starfish revealed that it is a potent stimulator of cardiac stomach contraction in vitro and that it triggers cardiac stomach retraction in vivo. Thus, discovery of NGFFYamide provides a novel insight into neural regulation of cardiac stomach retraction as well as a rationale for chemically based strategies to control starfish that feed on economically important shellfish (e.g. mussels) or protected marine fauna (e.g. coral).


Scientific Reports | 2016

Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways

Shi Tian; Meet Zandawala; Isabel Beets; Esra Baytemur; Susan E. Slade; James H. Scrivens; Maurice R. Elphick

Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in humans and other vertebrates. Homologs of GnRH and its cognate receptor have been identified in invertebrates–for example, the adipokinetic hormone (AKH) and corazonin (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships and origins of these signalling systems remain unknown. Here we have addressed this issue with the first identification of both GnRH-type and CRZ-type signalling systems in a deuterostome–the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH systems are orthologous and the origin of a paralogous CRZ-type signalling system can be traced to the common ancestor of the Bilateria (Urbilateria).

Collaboration


Dive into the Susan E. Slade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice R. Elphick

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi Tian

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge