Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan E. Tett is active.

Publication


Featured researches published by Susan E. Tett.


Clinical Pharmacokinectics | 2004

Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation

Christine E. Staatz; Susan E. Tett

The aim of this review is to analyse critically the recent literature on the clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplant recipients.Dosage and target concentration recommendations for tacrolimus vary from centre to centre, and large pharmacokinetic variability makes it difficult to predict what concentration will be achieved with a particular dose or dosage change. Therapeutic ranges have not been based on statistical approaches. The majority of pharmacokinetic studies have involved intense blood sampling in small homogeneous groups in the immediate post-transplant period. Most have used nonspecific immunoassays and provide little information on pharmacokinetic variability. Demographic investigations seeking correlations between pharmacokinetic parameters and patient factors have generally looked at one covariate at a time and have involved small patient numbers. Factors reported to influence the pharmacokinetics of tacrolimus include the patient group studied, hepatic dysfunction, hepatitis C status, time after transplantation, patient age, donor liver characteristics, recipient race, haematocrit and albumin concentrations, diurnal rhythm, food administration, corticosteroid dosage, diarrhoea and cytochrome P450 (CYP) isoenzyme and P-glycoprotein expression. Population analyses are adding to our understanding of the pharmacokinetics of tacrolimus, but such investigations are still in their infancy. A significant proportion of model variability remains unexplained. Population modelling and Bayesian forecasting may be improved if CYP isoenzymes and/or P-glycoprotein expression could be considered as covariates.Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within ‘acceptable’ ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immunosuppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.


Clinical Pharmacokinectics | 2007

Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients

Christine E. Staatz; Susan E. Tett

This review aims to provide an extensive overview of the literature on the clinical pharmacokinetics of mycophenolate in solid organ transplantation and a briefer summary of current pharmacodynamic information. Strategies are suggested for further optimisation of mycophenolate therapy and areas where additional research is warranted are highlighted. Mycophenolate has gained widespread acceptance as the antimetabolite immunosuppressant of choice in organ transplant regimens. Mycophenolic acid (MPA) is the active drug moiety.Currently, two mycophenolate compounds are available, mycophenolate mofetil and enteric-coated (EC) mycophenolate sodium. MPA is a potent, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), leading to eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil and EC-mycophenolate sodium are essentially completely hydrolysed to MPA by esterases in the gut wall, blood, liver and tissue. Oral bioavailability of MPA, subsequent to mycophenolate mofetil administration, ranges from 80.7% to 94%. EC-mycophenolate sodium has an absolute bioavailability of MPA of approximately 72%.MPA binds 97–99% to serum albumin in patients with normal renal and liver function. It is metabolised in the liver, gastrointestinal tract and kidney by uridine diphosphate gluconosyltransferases (UGTs). 7-O-MPA-glucuronide (MPAG) is the major metabolite of MPA. MPAG is usually present in the plasma at 20- to 100-fold higher concentrations than MPA, but it is not pharmacologically active. At least three minor metabolites are also formed, of which an acyl-glucuronide has pharmacological potency comparable to MPA. MPAG is excreted into the urine via active tubular secretion and into the bile by multi-drug resistance protein 2 (MRP-2). MPAG is de-conjugated back to MPA by gut bacteria and then reabsorbed in the colon.Mycophenolate mofetil and EC-mycophenolate sodium display linear pharmacokinetics. Following mycophenolate mofetil administration, MPA maximum concentration usually occurs in 1–2 hours. EC-mycophenolate sodium exhibits a median lag time in absorption of MPA from 0.25 to 1.25 hours. A secondary peak in the concentration-time profile of MPA, due to enterohepatic recirculation, often appears 6–12 hours after dosing. This contributes approximately 40% to the area under the plasma concentration-time curve (AUC). The mean elimination half-life of MPA ranges from 9 to 17 hours.MPA displays large between- and within-subject pharmacokinetic variability. Dose-normalised MPA AUC can vary more than 10-fold. Total MPA concentrations should be interpreted with caution in patients with severe renal impairment, liver disease and hypoalbuminaemia. In such individuals, MPA and MPAG plasma protein binding may be altered, changing the fraction of free MPA available. Apparent oral clearance (CL/F) of total MPA appears to increase in proportion to the increased free fraction, with a reduction in total MPA AUC. However, there may be little change in the MPA free concentration. Ciclosporin inhibits biliary excretion of MPAG by MRP-2, reducing enterohepatic recirculation of MPA. Exposure to MPA when mycophenolate mofetil is given in combination with ciclosporin is approximately 30–40% lower than when given alone or with tacrolimus or sirolimus. High dosages of corticosteroids may induce expression of UGT, reducing exposure to MPA. Other co-medications can interfere with the absorption, enterohepatic recycling and metabolism of mycophenolate. Most pharmacokinetic investigations of MPA have involved mycophenolate mofetil rather than EC-mycophenolate sodium therapy.In population pharmacokinetic studies, MPA CL/F in adults ranges from 14.1 to 34.9 L/h (ciclosporin co-therapy) and from 11.9 to 25.4 L/h (tacrolimus co-therapy). Patient bodyweight, serum albumin concentration and immunosuppressant co-therapy have a significant influence on CL/F.The majority of pharmacodynamic data on MPA have been obtained in patients receiving mycophenolate mofetil therapy in the first year after kidney transplantation. Low MPA AUC is associated with increased incidence of biopsy-proven acute rejection. Gastrointestinal adverse events may be dose related. Leukopenia and anaemia have been associated with high MPA AUC, trough concentration and metabolite concentrations in some, but not all, studies. High free MPA exposure has been identified as a risk factor for leukopenia in some investigations. Targeting a total MPA AUC from 0 to 12 hours (AUC12) of 30–60 mg ∙ hr/L is likely to minimise the risk of acute rejection and may reduce toxicity.IMPDH monitoring is in the early experimental stage. Individualisation of mycophenolate therapy should lead to improved patient outcomes. MPA AUC12 appears to be the most useful exposure measure for such individualisation. Limited sampling strategies and Bayesian forecasting are practical means of estimating MPA AUC12 without full concentration-time profiling. Target concentration intervention may be particularly useful in the first few months post-transplant and prior to major changes in anti-rejection therapy. In patients with impaired renal or hepatic function or hypoalbuminaemia, free drug measurement could be valuable in further interpretation of MPA exposure.


Clinical Pharmacokinectics | 2010

Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II

Christine E. Staatz; Lucy K. Goodman; Susan E. Tett

The calcineurin inhibitors ciclosporin (cyclosporine) and tacrolimus are immunosuppressant drugs used for the prevention of organ rejection following transplantation. Both agents are metabolic substrates for cytochrome P450 (CYP) 3A enzymes — in particular, CYP3A4 and CYP3A5 — and are transported out of cells via P-glycoprotein (ABCB1). Several single nucleotide polymorphisms (SNPs) have been identified in the genes encoding for CYP3A4, CYP3A5 and P-glycoprotein, including CYP3A4 —392A>G (rs2740574), CYP3A5 6986A>G (rs776746), ABCB1 3435C>T (rs1045642), ABCB1 1236C>T (rs1 128503) and ABCB1 2677G>T/A (rs2032582). The aim of this review is to provide the clinician with an extensive overview of the recent literature on the known effects of these SNPs on the pharmacodynamics of ciclosporin and tacrolimus in solid-organ transplant recipients. Literature searches were performed and all relevant primary research articles were critiqued and summarized. There is no evidence that the CYP3A4 —392A>G SNP has an effect on the pharmacodynamics of either ciclosporin or tacrolimus; however, studies have been limited.For patients prescribed ciclosporin, the CYP3A5 6986A>G SNP may influence long-term survival, possibly because of a different metabolite pattern over time. This SNP has no clear association with acute rejection during ciclosporin therapy. Despite a strong association between the CYP3A5 6986A>G SNP and tacrolimus pharmacokinetics, there is no consistent evidence of organ rejection as a result of genotype-related under-immunosuppression. This is likely to be explained by the practice of performing tacrolimus dose adjustments in the early phase after transplantation. The effect of the CYP3A5 6986A>G SNP on ciclosporin-and tacrolimus-related nephrotoxicity and development of hypertension is unclear. Similarly, the ABCB1 SNPs exert no clear influence on either ciclosporin or tacrolimus pharmacodynamics, with studies showing conflicting results in regard to the main parameters of acute rejection and nephrotoxicity. In kidney transplant patients, consideration of the donor kidney genotype rather than the recipient genotype may be more important when assessing development of nephrotoxicity. Studies with low patient numbers may account for many inconsistent results to date. The majority of studies have only evaluated the effects of individual SNPs; however, multiple polymorphisms may interact to produce a combined effect. Further haplotype analyses are likely to be useful, particularly ones that consider both donor and recipient genotype. The effects of polymorphisms associated with the pregnane X receptor, organic anion transporting polypeptides, calcineurin inhibitor target sites and immune response pathways need to be further investigated. A large standardized clinical trial is now required to evaluate the relationship between the pharmacokinetics and pharmacodynamics of CYP3A5-mediated tacrolimus metabolism, particularly in regard to the outcomes of acute rejection and nephrotoxicity. It is not yet clear whether pharmacogenetic profiling of calcineurin inhibitors will be a useful clinical tool for personalizing immunosuppressant therapy.


Clinical Journal of The American Society of Nephrology | 2010

Consensus Report on Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplantation

Dirk Kuypers; Yannick Le Meur; Marcelo Cantarovich; Michael Tredger; Susan E. Tett; Dario Cattaneo; Burkhard Tönshoff; David W. Holt; Jeremy R. Chapman; Teun van Gelder

With the increasing use of mycophenolic acid (MPA) in solid organ transplantation, the need for more accurate drug dosing has become evident. Personalized immunosuppressive therapy requires better strategies for avoidance of drug-related toxicity while maintaining efficacy. Few studies have assessed the clinical usefulness of therapeutic drug monitoring (TDM) of MPA in solid organ transplantation in a prospective way, and they have produced opposing results. To provide clinicians with an objective and balanced clinical interpretation of the current scientific evidence on TDM of MPA, a consensus meeting involving 47 experts from around the world was commissioned by The Transplantation Society and held in Rome on November 20 to 21, 2008. The goal of this consensus meeting was to offer information to transplant practitioners on clinically relevant pharmacokinetic characteristics of MPA, to rationalize the basis for currently advised target exposure ranges for MPA in various types of organ transplantation, and to summarize available methods for application of MPA TDM in clinical practice. Although this consensus report does not evaluate the final role of MPA TDM in transplantation, it seeks to examine the current scientific evidence for concentration-controlled dosing of MPA.


Clinical Pharmacology & Therapeutics | 2002

Population pharmacokinetics of tacrolimus in adult kidney transplant recipients

Christine E. Staatz; Charlene Willis; Paul J. Taylor; Susan E. Tett

The aims of this study were to investigate the population pharmacokinetics of tacrolimus in adult kidney transplant recipients and to identify factors that explain variability.


Annals of Pharmacotherapy | 2009

Systematic Review of Interventions to Improve Prescribing

Remo Ostini; Desley Hegney; Claire Jackson; Margaret Williamson; J. M. Mackson; Karin Gurman; Wayne Hall; Susan E. Tett

Objective: To update 2 comprehensive reviews of systematic reviews on prescribing interventions and identify the latest evidence about the effectiveness of the interventions. Data Sources: Systematic searches for English-language reports of experimental and quasi-experimental research were conducted in PubMed(1951–May 2007). EMBASE (1974–March 2008), International Pharmaceutical Abstracts (1970–March 2008), and 11 other bibliographic databases of medical, social science, and business research. Following an initial title screening process and after selecting 6 specific intervention categories (identified from the previous reviews) in community settings, 2 reviewers independently assessed abstracts and then full studies for relevance and quality and extracted relevant data using formal assessment and data extraction tools. Results were then methodically incorporated into the findings of the 2 earlier reviews of systematic reviews. Data Selection And Synthesis: Twenty-nine of 26,314 articles reviewed were assessed to be of relevant, high-quality research. Audit and feedback, together with educational outreach visits, were the focus of the majority of recent, high-quality research into prescribing interventions. These interventions were also the most effective in improving prescribing practice. A smaller number of studies included a patient-mediated intervention; this intervention was not consistently effective. There is insufficient recent research into manual reminders to confidently update earlier reviews and there remains insufficient evidence to draw conclusions regarding the effectiveness of local consensus processes or multidisciplinary teams. Conclusions: Educational outreach as well as audit and feedback continue to dominate research into prescribing interventions. These 2 prescribing interventions also most consistently show positive results. Much less research is conducted into other types of interventions and there is still very little effort to systematically test why interventions do or do not work.


Therapeutic Drug Monitoring | 2004

Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia

Bronwyn Atcheson; Paul J. Taylor; Carl M. J. Kirkpatrick; Stephen B. Duffull; David W. Mudge; Peter I. Pillans; David W. Johnson; Susan E. Tett

The current approach for therapeutic drug monitoring in renal transplant recipients receiving mycophenolate mofetil (MMF) is measurement of total mycophenolic acid (MPA) concentration. Because MPA is highly bound, during hypoalbuminemia the total concentration no longer reflects the free (pharmacologically active) concentration. The authors investigated what degree of hypoalbuminemia causes a significant change in protein binding and thus percentage free MPA. Forty-two renal transplant recipients were recruited for the study. Free and total concentrations of MPA (predose, and 1, 3, and 6 hours post-MMF dose samples) and plasma albumin concentrations were determined on day 5 posttransplantation. Six-hour area under the concentration-time curve (AUC0–6) values were calculated for free and total MPA, and percentage free MPA was determined for each patient. The authors found a significant relationship between low albumin concentrations and increased percentage free MPA (Spearman correlation = −0.54, P < 0.0001). Receiver operating characteristic (ROC) curve analysis was performed on the albumin versus percentage free MPA data. The cutoff value of albumin determined from the ROC analysis that differentiated normal from elevated percentage free MPA (defined as ≥3%) in this patient population was 31 g/L. At this cutoff value albumin was found to be a good predictor of altered free MPA percentage, with a sensitivity and specificity of 0.75 and 0.80, respectively, and an area under the ROC curve of 0.79. To rationalize MMF dosing regimens in hypoalbuminemic patients (plasma albumin ≤ 31 g/L), clinicians should consider monitoring the free MPA concentration.


Therapeutic Drug Monitoring | 1998

Evaluation of an immunoassay (EMIT) for mycophenolic acid in plasma from renal transplant recipients compared with a high-performance liquid chromatography assay.

Joanne L. Beal; Christopher E. Jones; Paul J. Taylor; Susan E. Tett

Mycophenolic acid is an immunosuppressant administered as a bioavailable ester, mycophenolate mofetil. The pharmacokinetics of mycophenolic acid have been reported to be variable. Accurate measurement of concentrations of this drug could be important to adjust doses. The aim of this study was to compare the enzyme-multiplied immunoassay technique (EMIT [Dade Behring; San Jose, CA, U.S.A.]) for mycophenolic acid with a high-performance liquid chromatographic (HPLC) assay using samples collected from renal transplant recipients. The HPLC assay used solid phase extraction and a C18 stationary phase with ultraviolet (UV) detection (254 nm). The immunoassay required no manual sample preparation. Plasma samples (n=102) from seven patients, collected at various times after a dose, were analyzed using both methods. Both assays fulfilled quality-control criteria. Higher concentrations were consistently measured in patient samples when using EMIT. The mean (+/-standard deviation [SD]) bias (EMIT-HPLC) was 1.88+/-0.86 mg/L. The differences in concentrations were higher in the middle of a dosage interval, suggesting that a metabolite might have been responsible for overestimation. Measurement of glucuronide concentrations by HPLC demonstrated only a weak correlation between assay differences and glucuronide concentrations. If the crossreacting substance is active, EMIT could provide a superior measure of immunosuppression; if inactive, further work is needed to improve antibody specificity. In conclusion, it was found that EMIT overestimates the concentration of mycophenolic acid in plasma samples from renal transplant recipients compared with HPLC analysis.


Clinical Biochemistry | 2001

A retrospective analysis of mycophenolic acid and cyclosporin concentrations with acute rejection in renal transplant recipients.

Peter I. Pillans; R. Rigby; Paul Kubler; Charlene Willis; Paul Salm; Susan E. Tett; Paul J. Taylor

OBJECTIVES Although monitoring of cyclosporin (CsA) is standard clinical practice postrenal transplantation, mycophenolic acid (MPA) concentrations are not routinely measured. There is evidence that a relationship exists between MPA area under the concentration-time curve (AUC) and rejection. In this study, a retrospective analysis was undertaken of 27 adult renal transplant recipients. METHODS Patients received CsA and MPA therapy and had a four-point MPA AUC investigation. The relationship between MPA AUC performed in the first week after transplantation, as well as median trough cyclosporin concentrations, and clinical outcomes in the first month posttransplant were evaluated. RESULTS A total of 12 patients experienced biopsy proven rejection (44.4%) and 4 patients had gastrointestinal adverse events (14.8%). A statistically significant relationship was observed between the incidence of biopsy proven rejection and both MPA AUC (p = 0.02) and median trough CsA concentration (p = 0.008). No relationship between trough MPA concentration and rejection was observed (p = 0.21). Only 3 of 11 (27%) patients with an MPA AUC > 30 mg x h/L and a median trough CsA > 175 microg/L experienced acute rejection, compared with a 56% incidence of rejection for the remaining 16 patients. Patients who experienced adverse gastrointestinal events had significantly lower MPA AUC (p = 0.04), but median trough CsA concentrations were not significantly different (p = 0.24). Further, 3 of these 4 patients had rejection episodes. CONCLUSIONS In addition to standard CsA monitoring, we propose further investigation of the use of a 4-point sampling strategy to predict MPA AUC in the first week posttransplant, which may facilitate optimization of mycophenolate mofetil dose at a time when patients are most vulnerable to acute rejection.


Clinical Pharmacokinectics | 2003

Principles and Clinical Application of Assessing Alterations in Renal Elimination Pathways

Susan E. Tett; Carl M. J. Kirkpatrick; Annette S. Gross; Andrew J. McLachlan

Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes — glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma Creatinine and estimating Creatinine clearance. However, estimated Creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated Creatinine clearance and renal drug clearance in different clinical settings, challenging the ‘intact nephron hypothesis’ and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required.Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers.This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications.Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.

Collaboration


Dive into the Susan E. Tett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Taylor

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

Lisa Nissen

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

L. Pulver

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard O. Day

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlene Willis

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

C. Cutts

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge